Chapter 3 solutions

3.1(a) Yes;(b) No; (c) No; (d) No; (e) Yes;(f) Yes;(g) Yes;(h) No; (i) Yes.

The proof of (g) by direct calculationis quite difficult. A trick makesit easier
Usethe hyperbolictangentfunctiontanh(x) = (e — e™*)/(e*+ €7*). Thisfunctionis
strictly increasingagndmapsR ontotheinterval (—1,1); andit satisfiegsheequation

_ tanhx+tanhy
tanf(x+y) = 1+ tanhxtanhy’

Soit is anisomorphismfrom the additive group (R, +) to (G, o) (in the casec = 1);
this structure beingisomorpphicto a group, mustitself be a group. For an arbitrary
vallueof ¢, simply rescalg(usethe functionctanhx).

3.2.(a)(12)(13)=(123)and(13)(12) =(132).
(b) The permutationgivenin (a) actuallybelongto S, for ary n > 3.

3.3. Call thematricesl,A,B,C,D,E. Constructa Cayley table. (This involvesa fair
amountof work.) From the Cayley table we read off the closurelaw, the identity
law (I is theidentity), andthe inverselaw. The associatie law holdsbecausematrix
multiplicationis associatie. Sothe matricesdo form a group.

It is notabelian:again,two non-commutingnatricescanbefoundfrom the Cayley
table.(For example, AC=D butCA=E.)

3.4.WhatdoesAA~1 C Amean?t meanghatthesetof all elementsb—1, for a,b € A,
is asubsebf A; in otherwords,for ary a,b € A, wehaveab™! € A. Butthisis precisely
the conditionof the SecondSubgrouprest!

3.5. U(R) is infinite. For (1+v/2)(—1++/2) =1,s01++/2is aunit. Thenall its
powersareunits,andclearlythey areall distinct.

3.6. Closure: If x,y € Sthen (xy)2 = xyxy = xxyy = 1-1 = 1, wherewe usedthe
commutatvity to shawv xyxy = xxyy. Soxy € S.
Associatve law: This holdsin generafor multiplicationin aring.
Identity law: We aregiventhatR hasanidentity 1 which satisfiesl? = 1,s01 € S.
Inverselaw: Every elementof Sis its own inverse.
Commutatve law: We aregiventhatmultiplicationin R is commutatve.

3.7.(a) If gh = hg thenghgh = gghh, andcorversely(cancellingg from theleft andh
from theright).
(b) Sinceg—th~1 = (hg)~1, theresultis cleat
(c) Supposehat (gh)" = g"h" holdsfor n = m,m+ 1, m+ 2. The equatinsfor
n=m,m+ 1give
ng—lhrH—l — (gh)ngh — gnhngh

Cancellingg" from the left and h from the right, we seethat gh" = h'g, thatis, g
commutesvith h". Simimlarly, theequationgor m=n+1,n+ 2 shav thatg commutes
witth h"*1. Sog commuteswith h"+1h~" = h, asrequired.(Thelaststepcanbe done
by direct calculation,or by shaving that the setof elementswvhich commutewith g
(theso-calledcentraliser of g) is asubgroup.)



3.8. The automorphisngroupof R consistsof permutationsthatis, it is a subsetof
the symmetricgroup. The operationis composition,asin the symmetricgroup. And,
aswe showed, it formsagroupin its own right. Soit is a subgroupof the symmetric
group. (Thereis nothingspecialherein thefactthatRis aring. The samewould hold
for theautomorphisngroupof any objectwhatever.)

3.9. We aregiven(G0) and(G1) andhalf of eachof the conditions(G2) and(G3),and
have to provethe otherhalf. Thatis, we mustshowv thatgoe= g (in (b)) andgoh=-¢
(in (c)).

We prove the secondbf thesethingsfirst. Giveng € G, leth € G beasin (c). Also
by (c), thereexistsk € G with ko h = e. Now we have

(koh)o(goh) =ec(goh)=goh,
ko((hog)oh)=ko(eohy=koh=¢g,

andthesetwo expressionsareequalby the Associative Law.
Now, if his asin (c), we have

goe=go(hog)=(goh)jog=eog=g.

3.10. Take G to be ary setwith morethanoneelementanddefinethe operatione as
suggestedhatis, goh = hfor all g,h € G. Clearlytheclosurelaw (GO0) holds. For the
associatie law, we have

go(hok)=hok=k,
(goh)ok=k.

Take ary element € G; thenwe haveeog= g for all g € G. Now, for ary g € G, take
h = e, andwe havegoh=h = e. Soall the conditionshold. But G is not a group;for,
if X# Y, thenxoy=yoy=Yy, andsothecancellatiorlaw fails.

3.11. Recallthat,if n > 0, theng" is definedby induction: g = g andg™'+g"-g.
Also,g? =1andg~™ = (g™~ for m> 0. Alternatively, if n> 0, theng" is theproduct
of nfactorsequalto g, andif n < 0, it is theproductof —n factorsequalto g~—1. Thelast
form is themostcorvenient.(Hereweimplicitly usedthat(g")~* = (g~1)". Thisholds
becaus@"- (g~1)" is the productof n factorsg followedby n factorsg—?; everything
cancels|eaving theidentity.)

To prove thatg™™" = g™- ¢", therearenine differentcasego consider according
to whetherm andn are positive, zeroor negative. If oneor otherof themis zero,the
resultis easy:for example,

gMo=g"=g"-1=g"-¢".

This leavesfour cases.If m,n> 0, theng™- g" is the productof m factorsg followed
by the productof n factorsg, which is the productof m+ n factorsg, thatis, g™™".
Supposehat m is positive and n negative, saym = —r. Theng™- g" is the product
of m factorsg followed by r factorsg=1. If m>r, thenr of the gs cancelall the
g~ 1s, leaving g™ " = g™™". If m< r, thenm of the g~*s cancelall the gs, leaving
(g~ H' M =g~ (=M = g™n_ Theamuments similarin the othertwo cases.



Theproofof (g™" = g™ alsodividesinto anumberof caseswWhenmor nis zero,
both sidesaretheidentity. Whenm andn are positive, then (g™)" is the productof n
terms,eachthe productof mfactorsg, giving theresultg™. Thecasem< 0 andn > 0
is similarwith factorsg~* insteadIf m> 0 andn < 0, sayn= —r, then(g™" = (g™)~"
is the productof r factorsequalto (g™)~! = (g~1)™, sois the productof nr factors
g~1; thusit is equalto g~™ = g™. Thelastcasés left to thereader

Finally, supposehatgh = hg andconsider(gh)". If n> 0, thisis the productof n
factorsgh, which canbe rearrangedvith all the gs at the beginning to give g"- h" as
required.If n< 0,sayn= —r, we have

(gh)" = (gh)™" = (hg) ™" = ((hg)")* = (h'g")*
— (gr)—l(hr)—l — g—rh—r — gnhn_
(We usethefactthat (xy) = = y~x~1 here.)Finally, if n = 0, thenbothsidesarethe
identity.

3.12Thesurprisingconclusionis thatthe elements, b, c,d, e all have order11,andso

theorderof G is divisible by 11 (by Lagranges Theorem).The proofis “elementary”

(notheoryis used) but themanipulationsarenot easyto find!
Fromthegivenequationsye obtainc = ab, d = bab, e = abab, andso

a = hbabab%ab (1)
b = ab%aba 2

Multiply equation(1) ontheright by a anduse(2) to get
a? = bab(ab®aba) = bab? (3)

Multiply equation(1) ontheleft by ab to get

aba = (ababa)b?ab = b*ab 4)
From(2) and(4),
b = ab’aba = ab°ab (5)
Cancellingb givesab®a =1, sob® = a2, or
a>=b"° (6)

Now (3) givesb™ = bab?, so
a=b8 (7)

Combining(6) and(7) gives
b—5 — a2 — b_16,

sob!! = 1. Sinceb # 1, we concludethat b hasorder11. Now everythingcanbe
expressedn termsof b:

a=b®=Db% c=ab=b* d=bc=b’, e=cd=b".



3.13. We claim that, for ary g € G, the setgHg~! is a subgroupof G. [Apply the
SubgroupTest: take two elementsof gHg~1, saygxg~! andgyg—?!, wherex,y € H.
Then

(oxg H(ayg™)™H =gxg~ gyt

sincexy € H.]

Now the left cosetgH of H is equalto (gHg1)g, which is a right cosetof the
subgroupgHg .

_l:

g l=gxy HgtegHg™,

3.14.(a) Supposehatn;,ny € |, sothatg™ = g™ = 1. Theng™ "2 = g"(g"2) ! =1,
song — nel

Supposehatn € | andr is ary integer. Theng™ = (g")" =1, sonr € 1.

Thusl passesheldeal Test.

SinceZ is aPID, thereis anintegerm suchthat! = (m). We maytake m> 0. This
meanghateither

e m= 0, whenceno power of g exceptg® is theidentity, andg hasinfinite order;
or

e m> 0,in whichcasey" = 0if andonlyif nis amultiple of m, thatis, g hasorder
m.

(b)

3.15. (a) Lagranges Theorem:if G containsanelementof order2, then?2 dividesthe
orderof G.

(b) As suggestedlet x1,Y1,X%2,Y2,...,%m, Ym be the elementsof G which are not
equalto their inverseswith the notationchosersothatxi‘1 =y fori=1,...,m and
letz,...,z betheelementequalto theirinversesThen|G| = 2m+r. If |G| is even,
thenr is even. But theidentity is equalto its inverse sor > 1. Hencer > 2, andthere
is atleastonenon-identityelementz, sayz Thenz=z"1,soZ = 1; sincez# 1, zhas
order2.

3.16. Follow the hint by taking Q to be the setof displayedp-tuples. Thefirst p— 1
elements;,...,gp—1 canbechoserarbitrarily, andgp, is thenforcedto betheinverse
of their product.So|Q| = |G|P~2, andin particular|Q| is amultiple of p.

If 9102---gp = 1, thengy = (g2---gp) "L, andsogy ---gpg1 = 1. Thusthe cyclic
permutatiornmt doesindeedtake ary memberof Q to another Sincert® is the identity,
eachcycle of ton Q haslength1 or p. Becausef thedivisibility by p, thenumberof
fixedpointsis alsoamultiple of p.

If (91,...,9p) is fixedby m, then

(91792)"'79[)) = (92;--->gpagl)7

andsog; = g2 = ... = gp = g, say Sincethis elementbelongsto Q, we have gP = 1.
So the numberof elementssatisfyinggP = 1 is a multiple of p. Oneof theseis the
identity; therestall have orderp. We concludethatG containselementsf orderp, as
required.



3.17. (a) Shaw that G is a subgroupof the generallinear group (the group of non-
singularmatrices)y applyingthe Subgrouprest.
(b) Defineamap® from G to the multiplicative groupof F by

a b\,
(0 1>G_a.

It is straightforwardto verify that6 is ahomomorphismits kernelis the setof matrices
in G with a= 1, thatis, N (whichis thusa normalsubgroupof G).
To shaw thatN is isomorphicto the additive groupof F, we defineanothemap@

from N to the additive groupby
1 b

andverifying thatthisis ahomomorphismit is clearlyabijection.
(c) Thisis doneby restrictingthemap8 to H andnotingthattheresultis abijection.
(d) By the First IsomorphismTheorem,G/N is isomorphicto the multiplicative
groupof F, whichis itself isomorphicto H.

3.18. G is agroupof order6 (sincetherearethreechoicesfor b, andtwo for a, since
a # 0). Onecancheckdirectly from Cayley tablesthatthe map®6 givenby

(é 2)62(1), (é 1)9:(123), (é i)e:(132),
(S i’>e=(12), (S 1)9:(23), (g 5)92(13)7

is anisomorphism.
In Section2.4,you will seethatany non-abeliargroupof order6 is isomorphicto
Ss.

3.19 You have to verify the groupaxioms. Closureis clearsince,if a;,az # 0, then
ajap # 0. The identity is easily checled to be (1,0) while the inverseof (a,b) is
(1/a,—b/a). The associatie law involvesdoing somecalculationto shaw thatboth
((a1,b1) o (az,bz)) 0 (a3, bs) and(az,b1) o ((az,b2) o (a3, b3)) areequalto (ayaxas, biazaz+
boas + bs).

Let fap be the permutationof the real numberswhich mapsx to ax+ b: thatis
(writing permutation®n theright)

Xfa7b = aX+ b.
Now we have
Xfal,bl faz,bz = (agx+by) faz,bz = apaiX+ apbg + by;

thatis,

fal:bl faz,bz = falaZ7b132+b2'



Now the permutationsof this shapeform a subgroupof the symmetricgroup. (Ap-
plying the First SubgroupTest, we have alreadyshown that this setis closedunder
composition;so it is enoughto verify thatthe inverseof fap is f1/14 _p/a, Whichis
againin theset.)

Clearly this groupis isomorphicto the ‘group’ G in thefirst part of the question.
SoG reallyis agroup!

Thesaving is thatwe do not have to verify the associatie law (sincethe composi-
tion of permutationss necessarilyassociatie).

3.20.(a) We have

Yg =g (xy)g=9"xg-g"'yg=xiq- Vg,

solg is ahomomorphismlt is a bijectionbecausét hasaninversefunctionig-1 (see
(b) below).

(b) We have

(Xg)th = h~*g~*xgh = (gh) ~*x(gh) = Xign,

sotheset{lg: g € G} is closedundercomposition.We alsoseethati 1 is theinverse
of 14 (sincel is the identity map),sothis setis alsoclosedunderinversion,andis a
subgroupof the groupAut(G).

(c) Thedisplayedequationin (b) shawvs thatthe mapg — 14 is a homomorphism.
Clearlyit is onto. Its kernelis

{g€G:ig=1}={ge G: (¥xe€ G)g xg = x} = Z(G),

sinceg~1xg = x if andonly if xg = gx. Theresultfollows from the FirstIsomorphism
Theorem.

(d) Let a be any automorphismof G. We claim thata—llgo( = lga, Wherethe
producton the left of the equationis calculatedn the groupAut(G). This will shov
thatany conjugateof aninnerautomorphisnis aninnerautomorphismandhencethat
the groupof innerautomorphismss anormalsubgroupof Aut(G).

We provetheclaim by calculatingthe effect of the compositeautomorphisnon an
arbitraryelementx € G:

xa~tiga

(g 'xa 'g)a
= g laxa~taga

= (gu)=""xga

Xlga-
3.21Thereis

e onesubgroupof order6 (viz. S3), whichis normal;

¢ onesubgroupof order3 (viz. {(1),(123),(132)}), whichis normal;

e three subgroupsof order 2 (viz. {(1),(12)}, {(1),(13)}, and {(2),(2 3)}),
which areall conjugateandhencenot normal;



e onesubgroupof orderl (viz. {(1)}), whichis normal.

3.22. Theexponential function exp(x) = € is a bijectionbetweenrall therealsandthe
positivereals(its inverseis thelogarithm function log(x)). It isahomomorphismsince
exp(x+y) = exp(x) - exp(y). Soit is anisomorphism.

3.23.Weapplythesubgrougest. If n;hy,nzhy € NH, then(nghy ) (nzh) = = mphghy tny L.
Now N is a normal subgroup,so hlhz‘lN = Nhlhgl. The left-hand side contains
hih; 152, so the right-handside doesalso; thatis, hihyn;* = ngnih;?, for some
nz € N. Thuswe have

(nlhl)(nzhz)_l = n1n3h11h2_1 € NH
asrequired;soNH is asubgroup.

(a) True.If N andH arenormalsubgroupsthenfor ary nh € NH andg € G, we have
g~ *(hn)g= (g™'ng)(g~"hg) € NH.

(b) False:take, for example,G = S3, andlet N andH besubgroupof orders3 and2
respectiely. ThenNH = G, butH is notnormal.

3.24.(a) _ _ _
B(ky + ko) = e2Mkatke)/n — g2rika/n. 21iko/n — §(i;)B(ky).

Its imageis Gy, sinceevery nth root of unity hasthis form. Its kernelis {k € G; :
e?k/n = 1}, whichis the setof all multiplesof n.

(b) A cosetof Ker(B) is obtainedby addinga fixed integerk to every multiple of
n, sois acongruencelassasclaimed. So G1/Ker(0) is the setof congruencelasses
modulon, which comprisethe ‘integersmodn’.

3.25. Let thesizesof theconjugagy classeden, ..., n;, with ny = 1 (correspodingo
theidentity). Eachn; dividestheorderof G, sayn; = |G|/a;. Sincey nj = |G|, we have

1

Zazl.

Thegrouporderis thelargestof thenumbers;.

(a) Theonly solutionof this equatiorwith r =2is 1/2+1/2= 1. Soagroupwith
2 conjugagy classesasorder2.

(b) S3 hasthreeconjugay classes:the identity, the threetranspositionsand the
two 3-cycles.

(c) Theclassequationwith r = 3 hasjustthreesolutionsyviz.

1=1/3+1/3+1/3=1/2+1/4+1/4=1/2+1/3+1/6.

Soagroupwith threeclasse$asorderatmost6. If its orderis 6, thenit is non-abelian
andsois isomorphicto S. (In fact,thesolution1=1/3+1/3+ 1/3corespondso the
cyclic groupof order3, while thesolutionl = 1/2+1/4+ 1/4 doesnt correspondo
ary group,sincethereis no groupof order4.



(d) We shaw thatthe equationy{_; 1/a; = 1 hasonly a finite numberof solutions
in positive integers. Thenthereis a boundon the orderof a groupwith r conjugag
classesnamely the largesta; occurringin ary solution.

In factwe provethemoregeneratesultthat,for any xandr, theequationy;_, 1/a; =
x hasonly finitely mary solutions.The proofis by inductiononr: thereis atmostone
solutionwhenr = 1, sotheinductionstarts.

Supposeéhattheresultis true with r — 1 replacingr. Now in the givenequation,
it is not possiblethat all the numbersa; aregreatrthanr/x, or elsethe sumof their
reciprocalswvould be smallerthanr. Sooneof them,saya,, is at mostr /X, in which
caseit takesonly finitely mary values. For eachvaluem of a,, we have the equation
z{;ll 1/a; = x—1/m, which by inductionhasonly finitely mary solutions.Sothereare
only finitely mary solutionsaltogether

3.26 Checkthering axioms. Closurerequiresthatthe pointwisesumandthe compo-
sition of endomorphismareendomorphismsThe zeroelements the enromorphism
which mapseverythingto the zeroelementof A. As anexample,theright distributive
law is provedasfollows:

a(0+Qu) = (a0+m)y = (B+aQy=(aB)Y+ (ag)y,
a6 + @) = a(8y) +a(ew) (@0)y + (aQ)y.

Note thetthe endomorphisming hasanidentity (the mapwhich takesevery element
of Atoitself) butis notin generacommutatve.

3.27.Constructa Cayley table.

3.28.The(i, j) entryof P(1 ) P(TR) countsthenumberof timesthatthereis anindex k
suchthatthe (i, k) entryof P(1y) andthe (k, j) entryof P(1y) arebothequalto 1. This
requireghatimy = k andkmp = j. Sothereis atmostonek, andthereis suchak if and
onlyif i j. SoP(m)P(m) = P(TuTy) asrequired.

For ary field F, themapP : t— P(m) from anarbitrarysubgroupH of the sym-
metricgroup$, to the groupof non-singulam x n matricesover F is one-to-oneand
is a homomorphisn(by what hasjust beenproved). SoIlm(P) is a groupof matrices
isomorphicto H.

[Remark: By Cayley’s Theoremit follows thatevery finite groupis isomorphicto
amatrix group.Not every infinite groupis isomorphicto a matrix group,however]

3.29. The Cayley tablehasg; in row r andcolumnsif andonly if g.gs = gi. How
mary timesdoesg; occurin row r? The answelis the numberof valuesof s suchthat
0rgs = Ui But thereis exactly one,sincenecessarilys = g7 1g; is the uniquesolution.
Similarly g; occursjustoncein columns.

G is abelianif andonly if grgs = gsgr for all r,s, thatis, the elementin row r and
columnsis equalto theelementn row sandcolumnr (whichis to saythatthe Cayley
tableis symmetric).

3.30. Verificationof the axiomsis straightforward: closureis obvious,a simplecalcu-
lation provesassociatiity, theidentity is (1,1) (where,note,thefirst 1 is theidentity
of G andtheseconds theidentity of H), andtheinverseof (g, h) is (g~1,h™1).
Theformulafor its orderis givenby Propositionl.1.
Thelastpartis anothersimplecalculationsimilar to the proof of associatiity.



3.31.(a) Every element(g, h) of C, x C;, satisfiegg,h)? = (g%, hp) = (1,1).

(b) If C2 = (@), Cz = (b), andCs = {c), thenthemapc" — (a",b") is therequired
isomorphism(Thekey pointis that,if (a",b") = 1, thena” = b" =1, soboth2 and3
divide n, so6 dividesn, soc" = 1.)

(c) Cs is the onecontainingelementof order8. C; x C; x C; is the onewith no
elementof ordergreatetthan2.

C, x C4 occursin two guises:in termsof the discussionthe casesab = ba, b? = 1
andab = ba, b’ = a? both give rise to this group. (Supposehata* = 1, b = 1, and
ab = ba. If we hadinsteadchosent’ = ab asanelementoutside(a), then(b')? = a?
andab’ =b'a.)

3.32. (a) Thesepermutationdorm the dihedralgroup, the group of symmetriesof a
squargactingasa permutatiorgroupon the verticesof thesquare.)

(b) Constructa Cayley tableto verify the closureandinverselaws. Associatvity
andtheidentity law areclear

Thenon-isomorphisnis shovn by countingelement®f order2: thedihedralgroup
in (a) hasfive, the quaterniorgroupin (b) hasonly one.

3.33.(a)If Zp = (&) andZy = (b), thentheelement(a, b) of Z,, x Z hasorderpq.
(b) In Z, x Zp, every elementhasorderdividing p.

3.34. Therearesereralwaysto solve this question.We notefirst that A4 containsthe
identity, threeelementf order2, andeightelementof order3 (andnoneof order6).
SoasupposedubgroupH of order6 could not containan elementof order6 either,
thatis, it could not be cyclic. Soit mustbeisomorphicto Ss, with all threeelements
of order2 andjust two of the eightelementof order3. But theidentity andthethree
elementsf order2 form the Klein groupV. So,if sucha subgroupH could exist,
it would containV. But thenLagranges Theoremis contradicted since4 doesnt
divide 6.

Alternatively, arguethat the hypotheticalH must containan elementof order 2
and an elementof order3, but arny suchelementsgenerate the whole of A4 (thatis,
every elemenbf A4 canbewritten asa productof them),sono propersubgroupcould
containthem.

3.35. If ais the rotationthrough90°, andb ary reflection,thenz = a?. We have
b~lab = a~1. This shovsthatno reflectionliesin the centre(it doesnt commutewith
a), anda anda~! don't lie in the centre(they don’t commutewith reflections).On the
otherhand,checkingshows that z lies in the centre,which thus consistsof z andthe
identity.

Now Z(G) is a normalsubgroupof G, so G/Z(G) is defined,andis a group of
order4. It is the Klein group: for we have (Z(G)a)? = Z(G)a? = Z(G)z= Z(G) and
(Z(G)b)? = Z(G)b? = Z(G) for ary reflectionb.

3.36. 8 is ahomomorphisnmore-orlessby definition: if g inducesg* andh induces
h*, thengh inducesg*h*.

Direct calculationshavs thatary permutatiorof {A, B,C} is inducedby someele-
mentof &, sotheimageof 6 is S3, with order6.

If g € Ker(B), theng fixesall threeof A,B,C. Supposéahatg # 1: sayg mapsl to
2. Sinceqg fixesthepartition A, it mustmap?2 backto 1, andeitherfix or interchange3



and4. Butif it fixed 3, thenit would maptheset{1,3} to theset{2,3}, andsowould
notfix B. In thisway we find thatthe kernelof 8 consistsof theidentity andthethree
elementswith two 2-cycles.Soit hasorder4, andtheequationis true.

3.37.Considettheelemenim=*n=tmn, wherem e M andn € N. Ononehandiit is the
productof two elementsof M, namelym=1 andn—1mn (thelatteris a conjugateof m,
soliesin M sinceM is anormalsubgroup)sois in M. Ontheother; it is the productof
two elementf N, namelym™n~'m (a conjugateof n~1) andn, soliesin N. Sothis
elemenis in MNN. By assumptiongn—*n=tmn= 1, sonm= mn.

The assumptiolNM = G meansthat every elementcan be written in this form.
Supposehat an elementhasmore than one suchexpressionsayg = nim; = nny.
Thennytng = mpm;t e NNM, son;tng = mpmyt =1, orng = np, my = my.

Defineamap6 : N x M to G by therule that (n,m)8 = nm. Accordingto thefact
justproved,thisis abijection. Also, it is ahomomorphismsince

(N1, my)B(N2,M2)0 = NyMmynoM, = NNy = (NN, MyMy) 8

(thesecondequalityholdingbecause,; andmy commute).So8 is anisomorphismas
required.

3.38. Checkthat,if g is arotationthroughanangle® aboutanaxisA, thenh—Ighis a
rotationthroughanangled abouttheaxisAh. Soeachtypeof axisandangleof rotation
determines conjugay class.Sothe classesandcorrespondingpermutationsare:

¢ |dentity (oneelement)jdentity permutation.

Rotationghrough90° aboutfaceaxis (6 elements)4-cycles.

Rotationghrough180° aboutfaceaxis (3 elements)productsof two 2-cycles.

Rotationsghrough180° aboutedgeaxis (6 elements)transpositions.

Rotationghrough12C aboutvertex axis(long diagonal)(8 elements)3-cycles.

3.39.You arenotactuallyaslkedto do arything in this question.Thepointis thatthere
is anequialencerelationonthe setof 30 edgesiwo edgeseingequivalentif they are
parallelor perpendiculgrandthis relationhasfive equivalenceclassesith six edges
in eachclass;ary rotationof the figure permuteghefive classes.

For the final deduction,we are in the position of knowing that the group G of
permutation®f the five framesinducedby rotationsof thefigureis isomorphicto the
rotationgroupandhasorder60. SoG hasindex 2 in S5 andis normal,henceis As.
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