
Chapter 3 solutions

3.1(a)Yes;(b) No; (c) No; (d) No; (e)Yes;(f) Yes;(g) Yes;(h) No; (i) Yes.
The proof of (g) by direct calculationis quite difficult. A trick makes it easier.

Usethehyperbolictangentfunctiontanh
�
x ��� �

ex � e� x ��� � ex � e� x � . This function is
strictly increasingandmapsR ontotheinterval

� � 1 	 1� ; andit satisfiestheequation

tanh
�
x � y �
� tanhx � tanhy

1 � tanhx tanhy �
So it is an isomorphismfrom the additive group

�
R 	 � � to

�
G 	
��� (in the casec � 1);

this structure,beingisomorpphicto a group,must itself be a group. For an arbitrary
vallueof c, simply rescale(usethefunctionc tanhx).

3.2. (a)
�
1 2� � 1 3��� �

1 2 3� and
�
1 3� � 1 2��� �

1 3 2� .
(b) Thepermutationsgivenin (a)actuallybelongto Sn for any n � 3.

3.3. Call the matricesI 	 A 	 B 	 C 	 D 	 E. Constructa Cayley table. (This involvesa fair
amountof work.) From the Cayley table we readoff the closurelaw, the identity
law (I is the identity), andthe inverselaw. Theassociative law holdsbecausematrix
multiplicationis associative. Sothematricesdo form agroup.

It is notabelian:again,two non-commutingmatricescanbefoundfrom theCayley
table.(For example,AC � D but CA � E.)

3.4.WhatdoesAA � 1 � A mean?It meansthatthesetof all elementsab � 1, for a 	 b � A,
is asubsetof A; in otherwords,for any a 	 b � A, wehaveab � 1 � A. But thisis precisely
theconditionof theSecondSubgroupTest!

3.5. U
�
R � is infinite. For

�
1 ��� 2� � � 1 ��� 2��� 1, so 1 ��� 2 is a unit. Thenall its

powersareunits,andclearlythey areall distinct.

3.6. Closure: If x 	 y � S then
�
xy � 2 � xyxy � xxyy � 1 � 1 � 1, wherewe usedthe

commutativity to show xyxy � xxyy. Soxy � S.
Associative law: Thisholdsin generalfor multiplicationin a ring.
Identity law: We aregiventhatR hasanidentity1 which satisfies12 � 1, so1 � S.
Inverselaw: Everyelementof S is its own inverse.
Commutative law: We aregiventhatmultiplicationin R is commutative.

3.7. (a) If gh � hg thenghgh � gghh, andconversely(cancellingg from theleft andh
from theright).

(b) Sinceg � 1h � 1 � �
hg ��� 1, theresultis clear.

(c) Supposethat
�
gh � n � gnhn holds for n � m 	 m � 1 	 m � 2. The equatinsfor

n � m 	 m � 1 give
gn � 1hn � 1 � �

gh � ngh � gnhngh �
Cancellinggn from the left and h from the right, we seethat ghn � hng, that is, g
commuteswith hn. Simimlarly, theequationsfor m � n � 1 	 n � 2show thatg commutes
witth hn � 1. Sog commuteswith hn � 1h � n � h, asrequired.(Thelaststepcanbedone
by direct calculation,or by showing that the setof elementswhich commutewith g
(theso-calledcentraliser of g) is a subgroup.)
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3.8. The automorphismgroupof R consistsof permutations,that is, it is a subsetof
thesymmetricgroup. Theoperationis composition,asin thesymmetricgroup. And,
aswe showed,it formsa groupin its own right. So it is a subgroupof thesymmetric
group.(Thereis nothingspecialherein thefact thatR is a ring. Thesamewould hold
for theautomorphismgroupof any objectwhatever.)

3.9.We aregiven(G0)and(G1) andhalf of eachof theconditions(G2) and(G3),and
have to provetheotherhalf. Thatis, wemustshow thatg � e � g (in (b)) andg � h � e
(in (c)).

We provethesecondof thesethingsfirst. Giveng � G, let h � G beasin (c). Also
by (c), thereexistsk � G with k � h � e. Now we have�

k � h ��� � g � h ��� e � � g � h ��� g � h 	
k � ��� h � g ��� h ��� k � � e � h ��� k � h � e 	

andthesetwo expressionsareequalby theAssociativeLaw.
Now, if h is asin (c), wehave

g � e � g � � h � g ��� �
g � h ��� g � e � g � g �

3.10. Take G to beany setwith morethanoneelement,anddefinetheoperation� as
suggested,thatis, g � h � h for all g 	 h � G. Clearlytheclosurelaw (G0)holds.For the
associative law, we have

g � � h � k ��� h � k � k 	�
g � h ��� k � k �

Takeany elemente � G; thenwehavee � g � g for all g � G. Now, for any g � G, take
h � e, andwe haveg � h � h � e. Soall theconditionshold. But G is not a group;for,
if x �� y, thenx � y � y � y � y, andsothecancellationlaw fails.

3.11. Recall that, if n � 0, thengn is definedby induction: g1 � g andgn � 1 � gn � g.
Also, g0 � 1 andg � m � �

gm ��� 1 for m � 0. Alternatively, if n � 0, thengn is theproduct
of n factorsequalto g, andif n  0, it is theproductof � n factorsequalto g � 1. Thelast
form is themostconvenient.(Hereweimplicitly usedthat

�
gn ��� 1 � �

g � 1 � n. Thisholds
becausegn � � g � 1 � n is theproductof n factorsg followedby n factorsg � 1; everything
cancels,leaving theidentity.)

To prove thatgm � n � gm � gn, thereareninedifferentcasesto consider, according
to whetherm andn arepositive, zeroor negative. If oneor otherof themis zero,the
resultis easy:for example,

gm � 0 � gm � gm � 1 � gm � g0 �
This leavesfour cases.If m 	 n � 0, thengm � gn is theproductof m factorsg followed
by the productof n factorsg, which is the productof m � n factorsg, that is, gm � n.
Supposethat m is positive andn negative, saym � � r. Thengm � gn is the product
of m factorsg followed by r factorsg � 1. If m � r, then r of the gs cancelall the
g � 1s, leaving gm � r � gm � n. If m  r, thenm of the g � 1s cancelall the gs, leaving�
g � 1 � r � m � g ��! r � m " � gm � n. Theargumentis similar in theothertwo cases.

2



Theproofof
�
gm � n � gmn alsodividesinto anumberof cases.Whenm or n is zero,

bothsidesarethe identity. Whenm andn arepositive, then
�
gm � n is theproductof n

terms,eachtheproductof m factorsg, giving theresultgmn. Thecasem  0 andn � 0
is similarwith factorsg � 1 instead.If m � 0 andn  0,sayn � � r, then

�
gm � n � �

gm ��� r

is the productof r factorsequalto
�
gm � � 1 � �

g � 1 � m, so is the productof mr factors
g � 1; thusit is equalto g � mr � gmn. Thelastcaseis left to thereader.

Finally, supposethatgh � hg andconsider
�
gh � n. If n � 0, this is theproductof n

factorsgh, which canbe rearrangedwith all the gs at the beginning to give gn � hn as
required.If n  0, sayn � � r, we have�

gh � n � �
gh � � r � �

hg � � r � ���
hg � r � � 1 � �

hrgr � � 1� �
gr � � 1 � hr � � 1 � g � rh � r � gnhn �

(We usethefact that
�
xy ��� 1 � y � 1x � 1 here.)Finally, if n � 0, thenbothsidesarethe

identity.

3.12Thesurprisingconclusionis thattheelementsa 	 b 	 c 	 d 	 e all haveorder11,andso
theorderof G is divisible by 11 (by Lagrange’sTheorem).Theproof is “elementary”
(no theoryis used),but themanipulationsarenot easyto find!

Fromthegivenequations,weobtainc � ab, d � bab, e � ab2ab, andso

a � babab2ab (1)

b � ab2aba (2)

Multiply equation(1) on theright by a anduse(2) to get

a2 � bab
�
ab2aba �
� bab2 (3)

Multiply equation(1) on theleft by ab to get

aba � �
ab2aba � b2ab � b3ab (4)

From(2) and(4),
b � ab2aba � ab5ab (5)

Cancellingb givesab5a � 1, sob5 � a � 2, or

a2 � b � 5 (6)

Now (3) givesb � 5 � bab2, so
a � b � 8 (7)

Combining(6) and(7) gives
b � 5 � a2 � b � 16 	

so b11 � 1. Sinceb �� 1, we concludethat b hasorder11. Now everythingcanbe
expressedin termsof b:

a � b � 8 � b3 	 c � ab � b4 	 d � bc � b5 	 e � cd � b9 �
3



3.13. We claim that, for any g � G, the setgHg � 1 is a subgroupof G. [Apply the
SubgroupTest: take two elementsof gHg � 1, saygxg � 1 andgyg � 1, wherex 	 y � H.
Then �

gxg � 1 � � gyg � 1 � � 1 ��� gxg � 1 � gy � 1g � 1 � g
�
xy � 1 � g � 1 � gHg � 1 	

sincexy � 1 � H.]

Now the left cosetgH of H is equalto
�
gHg � 1 � g, which is a right cosetof the

subgroupgHg � 1.

3.14.(a)Supposethatn1 	 n2 � I, sothatgn1 � gn2 � 1. Thengn1 � n2 � gn1
�
gn2 �#� 1 � 1,

son1
� n $ I

Supposethatn � I andr is any integer. Thengnr � �
gn � r � 1, sonr � I.

ThusI passestheIdealTest.
SinceZ is aPID, thereis anintegerm suchthatI � �

m � . We maytakem � 0. This
meansthateither% m � 0, whenceno power of g exceptg0 is the identity, andg hasinfinite order;

or% m � 0, in whichcasegn � 0 if andonly if n is amultipleof m, thatis, g hasorder
m.

(b)

3.15. (a) Lagrange’sTheorem:if G containsanelementof order2, then2 dividesthe
orderof G.

(b) As suggested,let x1 	 y1 	 x2 	 y2 	 ���&� 	 xm 	 ym be the elementsof G which arenot
equalto their inverses,with thenotationchosenso thatx � 1

i � yi for i � 1 	 ���&� 	 m; and
let z1 	 �&��� 	 zr betheelementsequalto their inverses.Then 'G '(� 2m � r. If 'G ' is even,
thenr is even.But theidentity is equalto its inverse,sor � 1. Hencer � 2, andthere
is at leastonenon-identityelementzi, sayz. Thenz � z � 1, soz2 � 1; sincez �� 1, z has
order2.

3.16. Follow thehint by takingΩ to be thesetof displayedp-tuples. Thefirst p � 1
elementsg1 	 �&��� 	 gp � 1 canbechosenarbitrarily, andgp is thenforcedto betheinverse
of their product.So 'Ω ')�*'G ' p � 1, andin particular 'Ω ' is a multipleof p.

If g1g2 ���&� gp � 1, theng1 � �
g2 �&�&� gp � � 1, andsog2 �&�&� gpg1 � 1. Thusthecyclic

permutationπ doesindeedtake any memberof Ω to another. Sinceπp is the identity,
eachcycleof π on Ω haslength1 or p. Becauseof thedivisibility by p, thenumberof
fixedpointsis alsoamultiple of p.

If
�
g1 	 ���&� 	 gp � is fixedby π, then�

g1 	 g2 	 ���&� 	 gp �+� �
g2 	 ���&� 	 gp 	 g1 �,	

andsog1 � g2 � ���&� � gp � g, say. Sincethis elementbelongsto Ω, we have gp � 1.
So the numberof elementssatisfyinggp � 1 is a multiple of p. Oneof theseis the
identity; therestall haveorderp. We concludethatG containselementsof orderp, as
required.
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3.17. (a) Show that G is a subgroupof the generallinear group(the groupof non-
singularmatrices)by applyingtheSubgroupTest.

(b) Definea mapθ from G to themultiplicativegroupof F by-
a b
0 1 . θ � a �

It is straightforwardto verify thatθ is ahomomorphism.Its kernelis thesetof matrices
in G with a � 1, thatis, N (which is thusa normalsubgroupof G).

To show thatN is isomorphicto theadditive groupof F, we defineanothermapφ
from N to theadditivegroupby -

1 b
0 1 . φ � b 	

andverifying thatthis is a homomorphism;it is clearlya bijection.
(c) Thisis doneby restrictingthemapθ to H andnotingthattheresultis abijection.
(d) By the First IsomorphismTheorem,G � N is isomorphicto the multiplicative

groupof F , which is itself isomorphicto H.

3.18. G is a groupof order6 (sincetherearethreechoicesfor b, andtwo for a, since
a �� 0). Onecancheckdirectly from Cayley tablesthatthemapθ givenby-

1 0
0 1 . θ � �

1�,	 -
1 1
0 1 . θ � �

1 2 3�,	 -
1 2
0 1 . θ � �

1 3 2�/	-
2 0
0 1 . θ � �

1 2�,	 -
2 1
0 1 . θ � �

2 3�,	 -
2 2
0 1 . θ � �

1 3�/	
is anisomorphism.

In Section2.4,you will seethatany non-abeliangroupof order6 is isomorphicto
S3.

3.19You have to verify the groupaxioms. Closureis clearsince,if a1 	 a2 �� 0, then
a1a2 �� 0. The identity is easily checked to be

�
1 	 0� while the inverseof

�
a 	 b � is�

1 � a 	 � b � a � . The associative law involvesdoing somecalculationto show that both�&�
a1 	 b1 �0� � a2 	 b2 �&�0� � a3 	 b3 � and

�
a1 	 b1 �0� �&� a2 	 b2 �0� � a3 	 b3 �&� areequalto

�
a1a2a3 	 b1a2a3

�
b2a3

� b3 � .
Let fa 1 b be the permutationof the real numberswhich mapsx to ax � b: that is

(writing permutationson theright)

x fa 1 b � ax � b �
Now wehave

x fa1 1 b1 fa2 1 b2 � �
a1x � b1 � fa2 1 b2 � a2a1x � a2b1

� b2;

thatis,
fa1 1 b1 fa2 1 b2 � fa1a2 1 b1a2 � b2 �
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Now the permutationsof this shapeform a subgroupof the symmetricgroup. (Ap-
plying the First SubgroupTest,we have alreadyshown that this set is closedunder
composition;so it is enoughto verify that the inverseof fa 1 b is f12 1a 1 � b 2 a, which is
againin theset.)

Clearly this groupis isomorphicto the ‘group’ G in thefirst part of the question.
SoG really is agroup!

Thesaving is thatwe do not have to verify theassociative law (sincethecomposi-
tion of permutationsis necessarilyassociative).

3.20.(a)We have �
xy � ιg � g � 1 � xy � g � g � 1xg � g � 1yg � xιg � yιg 	

so ιg is a homomorphism.It is a bijectionbecauseit hasan inversefunction ιg 3 1 (see
(b) below).

(b) We have �
xιg � ιh � h � 1g � 1xgh � �

gh � � 1x
�
gh ��� xιgh 	

sotheset 4 ιg : g � G 5 is closedundercomposition.We alsoseethatιg 3 1 is theinverse
of ιg (sinceι1 is the identity map),so this setis alsoclosedunderinversion,andis a
subgroupof thegroupAut

�
G � .

(c) Thedisplayedequationin (b) shows that themapg 6 ιg is a homomorphism.
Clearlyit is onto. Its kernelis4 g � G : ιg � 1 57�84 g � G :

�:9
x � G � g � 1xg � x 5;� Z

�
G �/	

sinceg � 1xg � x if andonly if xg � gx. Theresultfollows from theFirst Isomorphism
Theorem.

(d) Let α be any automorphismof G. We claim that α � 1ιgα � ιgα, wherethe
producton the left of the equationis calculatedin thegroupAut

�
G � . This will show

thatany conjugateof aninnerautomorphismis aninnerautomorphism,andhencethat
thegroupof innerautomorphismsis anormalsubgroupof Aut

�
G � .

We provetheclaimby calculatingtheeffectof thecompositeautomorphismon an
arbitraryelementx � G:

xα � 1ιgα � �
g � 1xα � 1g � α� g � 1αxα � 1αgα� �
gα ��� � 1 xgα� xιgα �

3.21Thereis% onesubgroupof order6 (viz. S3), which is normal;% onesubgroupof order3 (viz. 4 � 1�/	 � 1 2 3�,	 � 1 3 2�<5 ), which is normal;% three subgroupsof order 2 (viz. 4 � 1�,	 � 1 2�<5 , 4 � 1�,	 � 1 3�<5 , and 4 � 1�/	 � 2 3�,5 ),
which areall conjugate,andhencenot normal;
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% onesubgroupof order1 (viz. 4 � 1�,5 ), which is normal.

3.22.Theexponential function exp
�
x ��� ex is a bijectionbetweenall therealsandthe

positivereals(its inverseis thelogarithm function log
�
x � ). It is ahomomorphism,since

exp
�
x � y ��� exp

�
x ��� exp

�
y � . Soit is anisomorphism.

3.23.Weapplythesubgrouptest.If n1h1 	 n2h2 � NH, then
�
n1h1 � � n2h2 ��� 1 � n1h1h � 1

2 n � 1
2 .

Now N is a normal subgroup,so h1h � 1
2 N � Nh1h � 1

2 . The left-handside contains
h1h � 1

2 n � 1
2 , so the right-handside doesalso; that is, h1h � 1

2 n � 1
2 � n3n1h � 1

2 , for some
n3 � N. Thuswe have �

n1h1 � � n2h2 � � 1 � n1n3h11h � 1
2 � NH

asrequired;soNH is asubgroup.

(a)True. If N andH arenormalsubgroups,thenfor any nh � NH andg � G, wehave

g � 1 � hn � g � �
g � 1ng � � g � 1hg ��� NH �

(b) False:take, for example,G � S3, andlet N andH besubgroupsof orders3 and2
respectively. ThenNH � G, but H is not normal.

3.24.(a)
θ
�
k1
� k2 ��� e2πi ! k1 � k2 "=2 n � e2πik1 2 n � e2πik2 2 n � θ

�
k1 � θ � k2 � �

Its imageis G2, sinceevery nth root of unity hasthis form. Its kernel is 4 k � G1 :
e2πik 2 n � 1 5 , which is thesetof all multiplesof n.

(b) A cosetof Ker
�
θ � is obtainedby addinga fixed integer k to every multiple of

n, so is a congruenceclassasclaimed.SoG1 � Ker
�
θ � is thesetof congruenceclasses

modulon, which comprisethe‘integersmodn’.

3.25.Let thesizesof theconjugacy classesben1 	 �&��� 	 nr, with n1 � 1 (correspodingto
theidentity). Eachni dividestheorderof G, sayni �8'G ' � ai. Since∑ni �8'G ' , wehave

∑ 1
ai
� 1 �

Thegrouporderis thelargestof thenumbersai.
(a)Theonly solutionof thisequationwith r � 2 is 1� 2 � 1 � 2 � 1. Soagroupwith

2 conjugacy classeshasorder2.
(b) S3 hasthreeconjugacy classes:the identity, the threetranspositions,and the

two 3-cycles.
(c) Theclassequationwith r � 3 hasjust threesolutions,viz.

1 � 1 � 3 � 1 � 3 � 1 � 3 � 1 � 2 � 1 � 4 � 1 � 4 � 1 � 2 � 1 � 3 � 1� 6 �
Soagroupwith threeclasseshasorderatmost6. If its orderis 6, thenit is non-abelian
andsois isomorphicto S6. (In fact,thesolution1 � 1 � 3 � 1 � 3 � 1� 3corespondsto the
cyclic groupof order3, while thesolution1 � 1 � 2 � 1 � 4 � 1 � 4 doesn’t correspondto
any group,sincethereis nogroupof order4.
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(d) We show that theequation∑r
i > 11 � ai � 1 hasonly a finite numberof solutions

in positive integers. Thenthereis a boundon the orderof a groupwith r conjugacy
classes,namely, thelargestai occurringin any solution.

In factweprovethemoregeneralresultthat,for any x andr, theequation∑r
i > 11� ai �

x hasonly finitely many solutions.Theproof is by inductionon r: thereis at mostone
solutionwhenr � 1, sotheinductionstarts.

Supposethat the result is true with r � 1 replacingr. Now in the givenequation,
it is not possiblethat all the numbersai aregreatrthanr � x, or elsethe sumof their
reciprocalswould besmallerthanr. Sooneof them,sayar, is at mostr � x, in which
caseit takesonly finitely many values.For eachvaluem of ar, we have theequation
∑r � 1

i > 1 1 � ai � x � 1� m, whichby inductionhasonly finitely many solutions.Sothereare
only finitely many solutionsaltogether.

3.26Checkthe ring axioms.Closurerequiresthat thepointwisesumandthecompo-
sition of endomorphismsareendomorphisms.Thezeroelementis theenromorphism
which mapseverythingto thezeroelementof A. As anexample,theright distributive
law is provedasfollows:

a
�&�

θ � φ � ψ ��� �
a
�
θ � π �&� ψ � �

aθ � aφ � ψ � �
aθ � ψ � �

aφ � ψ 	
a
�
θψ � φψ �
� a

�
θψ � � a

�
φψ �?� �

aθ � ψ � �
aφ � ψ �

Notethet theendomorphismring hasan identity (themapwhich takesevery element
of A to itself) but is not in generalcommutative.

3.27.Constructa Cayley table.

3.28.The
�
i 	 j � entryof P

�
π1 � P � π2 � countsthenumberof timesthatthereis anindex k

suchthatthe
�
i 	 k � entryof P

�
π1 � andthe

�
k 	 j � entryof P

�
π2 � arebothequalto 1. This

requiresthatiπ1 � k andkπ2 � j. Sothereis atmostonek, andthereis suchak if and
only if iπ1π > j. SoP

�
π1 � P � π2 �+� P

�
π1π2 � asrequired.

For any field F , themapP : π @6 P
�
π � from anarbitrarysubgroupH of the sym-

metricgroupSn to thegroupof non-singularn A n matricesover F is one-to-one,and
is a homomorphism(by whathasjust beenproved). So Im

�
P � is a groupof matrices

isomorphicto H.
[Remark: By Cayley’s Theoremit follows thatevery finite groupis isomorphicto

amatrix group.Not every infinite groupis isomorphicto a matrix group,however.]

3.29. The Cayley tablehasgi in row r andcolumns if andonly if grgs � gi. How
many timesdoesgi occurin row r? Theansweris thenumberof valuesof s suchthat
grgs � gi. But thereis exactlyone,sincenecessarilygs � g � 1

r gi is theuniquesolution.
Similarly gi occursjustoncein columns.

G is abelianif andonly if grgs � gsgr for all r	 s, that is, theelementin row r and
columns is equalto theelementin row s andcolumnr (which is to saythattheCayley
tableis symmetric).

3.30.Verificationof theaxiomsis straightforward: closureis obvious,a simplecalcu-
lation provesassociativity, the identity is

�
1 	 1� (where,note,thefirst 1 is the identity

of G andthesecondis theidentityof H), andtheinverseof
�
g 	 h � is

�
g � 1 	 h � 1 � .

Theformulafor its orderis givenby Proposition1.1.
Thelastpartis anothersimplecalculationsimilar to theproof of associativity.
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3.31.(a)Everyelement
�
g 	 h � of C2 A C2 satisfies

�
g 	 h � 2 � �

g2 	 h2 ��� �
1 	 1� .

(b) If C2 �CB a D , C3 �CB b D , andC6 �CB c D , thenthemapcn @6 �
an 	 bn � is therequired

isomorphism.(Thekey point is that,if
�
an 	 bn �+� 1, thenan � bn � 1, soboth2 and3

dividen, so6 dividesn, socn � 1.)
(c) C8 is theonecontainingelementsof order8. C2 A C2 A C2 is the onewith no

elementof ordergreaterthan2.
C2 A C4 occursin two guises:in termsof thediscussion,thecasesab � ba, b2 � 1

andab � ba, b2 � a2 bothgive rise to this group. (Supposethat a4 � 1, b2 � 1, and
ab � ba. If we hadinsteadchosenb EF� ab asanelementoutside B a D , then

�
b EG� 2 � a2

andab EH� b E a.)

3.32. (a) Thesepermutationsform the dihedralgroup,the groupof symmetriesof a
square(actingasa permutationgroupon theverticesof thesquare.)

(b) Constructa Cayley tableto verify the closureandinverselaws. Associativity
andtheidentity law areclear.

Thenon-isomorphismis shown by countingelementsof order2: thedihedralgroup
in (a)hasfive, thequaterniongroupin (b) hasonly one.

3.33.(a) If Zp �*B a D andZq �IB b D , thentheelement
�
a 	 b � of Zp A Zq hasorderpq.

(b) In Zp A Zp, everyelementhasorderdividing p.

3.34. Thereareseveralwaysto solve this question.We notefirst thatA4 containsthe
identity, threeelementsof order2, andeightelementsof order3 (andnoneof order6).
Soa supposedsubgroupH of order6 couldnot containanelementof order6 either,
that is, it couldnot becyclic. So it mustbe isomorphicto S3, with all threeelements
of order2 andjust two of theeightelementsof order3. But theidentity andthethree
elementsof order2 form the Klein groupV . So, if sucha subgroupH could exist,
it would containV . But then Lagrange’s Theoremis contradicted,since4 doesn’t
divide6.

Alternatively, argue that the hypotheticalH must containan elementof order2
andan elementof order3, but any suchelementsgenerate the whole of A4 (that is,
everyelementof A4 canbewrittenasaproductof them),sonopropersubgroupcould
containthem.

3.35. If a is the rotation through90J , and b any reflection,then z � a2. We have
b � 1ab � a � 1. This shows thatno reflectionlies in thecentre(it doesn’t commutewith
a), anda anda � 1 don’t lie in thecentre(they don’t commutewith reflections).On the
otherhand,checkingshows that z lies in the centre,which thusconsistsof z andthe
identity.

Now Z
�
G � is a normalsubgroupof G, so G � Z � G � is defined,and is a groupof

order4. It is theKlein group: for we have
�
Z
�
G � a � 2 � Z

�
G � a2 � Z

�
G � z � Z

�
G � and�

Z
�
G � b � 2 � Z

�
G � b2 � Z

�
G � for any reflectionb.

3.36. θ is a homomorphismmore-or-lessby definition: if g inducesg K andh induces
h K , thengh inducesg K h K .

Direct calculationshows thatany permutationof 4 A 	 B 	 C 5 is inducedby someele-
mentof S4, sotheimageof θ is S3, with order6.

If g � Ker
�
θ � , theng fixesall threeof A 	 B 	 C. Supposethatg �� 1: sayg maps1 to

2. Sinceg fixesthepartitionA, it mustmap2 backto 1, andeitherfix or interchange3
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and4. But if it fixed3, thenit wouldmaptheset 4 1 	 3 5 to theset 4 2 	 3 5 , andsowould
not fix B. In this way we find thatthekernelof θ consistsof theidentity andthethree
elementswith two 2-cycles.Soit hasorder4, andtheequationis true.

3.37.Considertheelementm � 1n � 1mn, wherem � M andn � N. Ononehand,it is the
productof two elementsof M, namelym � 1 andn � 1mn (thelatter is a conjugateof m,
solies in M sinceM is anormalsubgroup),sois in M. Ontheother, it is theproductof
two elementsof N, namelym � 1n � 1m (a conjugateof n � 1) andn, solies in N. Sothis
elementis in M L N. By assumption,m � 1n � 1mn � 1, sonm � mn.

The assumptionNM � G meansthat every elementcanbe written in this form.
Supposethat an elementhasmorethanonesuchexpression,sayg � n1m1 � n2m2.
Thenn � 1

2 n1 � m2m � 1
1 � N L M, son � 1

2 n1 � m2m � 1
1 � 1, or n1 � n2, m1 � m2.

Definea mapθ : N A M to G by therule that
�
n 	 m � θ � nm. Accordingto thefact

justproved,this is abijection.Also, it is a homomorphism,since�
n1 	 m1 � θ � n2 	 m2 � θ � n1m1n2m2 � n1n2m1m2 � �

n1n2 	 m1m2 � θ
(thesecondequalityholdingbecausen2 andm1 commute).Soθ is anisomorphism,as
required.

3.38.Checkthat,if g is a rotationthroughanangleθ aboutanaxisA, thenh � 1gh is a
rotationthroughanangleθ abouttheaxisAh. Soeachtypeof axisandangleof rotation
determinesaconjugacy class.Sotheclasses,andcorrespondingpermutations,are:% Identity (oneelement),identitypermutation.% Rotationsthrough90J aboutfaceaxis(6 elements),4-cycles.% Rotationsthrough180J aboutfaceaxis(3 elements),productsof two 2-cycles.% Rotationsthrough180J aboutedgeaxis(6 elements),transpositions.% Rotationsthrough120J aboutvertex axis(longdiagonal)(8 elements),3-cycles.

3.39.You arenot actuallyaskedto doanything in thisquestion.Thepoint is thatthere
is anequivalencerelationonthesetof 30edges,two edgesbeingequivalentif they are
parallelor perpendicular, andthis relationhasfive equivalenceclasseswith six edges
in eachclass;any rotationof thefigurepermutesthefiveclasses.

For the final deduction,we are in the position of knowing that the group G of
permutationsof thefive framesinducedby rotationsof thefigureis isomorphicto the
rotationgroupandhasorder60. SoG hasindex 2 in S5 andis normal,henceis A5.
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