Problems on groups

Peter J. Cameron
Associated with Introduction to Algebra, OUP 2008

1. The purpose of this exercise is to construct a family of groups known as free groups.

Let X be a set, and let $\bar{X}=\{\bar{x}: x \in X\}$ be a set disjoint from X but in one-to-one correspondence with it. A word is defined to be an ordered string of symbols from the "alphabet" $X \cup \bar{X}$. A word is reduced if it does not contain any consecutive pair of symbols of the form $x \bar{x}$ or $\bar{x} x$, for $x \in X$.

Consider the following process of cancellation, which can be applied to any word w. Select any consecutive pair of symbols $\bar{x} x$ or $x \bar{x}$ in w (if such exists) and remove it. Repeat until the word is reduced.
(a)** Given a word, there may be several different ways to apply the cancellation process to it. Show that the same result is obtained no matter how the cancellation is performed.

Hint: One rather indirect way to prove this is as follows. Construct an (infinite) tree $T(X)$ whose edges are directed and labelled with elements of X such that, for any vertex v and any $x \in X$, there is a unique edge with label x leaving v and a unique edge with label x entering v. Choose a fixed starting vertex s in the tree. Then any word describes a path starting from s : symbol x means "leave the current vertex on the outgoing edge labelled x ", while \bar{x} means "leave the current vertex along the incoming edge labelled x ". Show that the finishing vertex of the path is not changed by cancellation.
(b) Let $F(X)$ denote the set of all reduced words in the alphabet $X \cup \bar{X}$, including the "empty word". Define an operation on $F(X)$ as follows: $w_{1} \circ w_{2}$ is obtained by concatenating the words w_{1} and w_{2} and then applying cancellation to the result. Prove that $F(X)$ is a group, in which the empty string is the identity and the inverse of x is \bar{x}.
(c) Let G be any group and $\theta: X \rightarrow G$ an arbitrary function. Show that there is a unique homomorphism $\theta^{*}: F(X) \rightarrow G$ whose restriction to X is θ.

The group $F(X)$ is called the free group generated by X.
2. Let G be a group. For subgroups H, K of G, let $[H, K]$ denote the subgroup generated by all commutators $[h, k]=h^{-1} k^{-1} h k$, for $h \in H$ and $k \in K$.

Define the lower central series

$$
G=G^{(0)} \geq G^{(1)} \geq G^{(2)} \geq \cdots
$$

by the rule that $G^{(0)}=G$ and $G^{(i+1)}=\left[G^{(i)}, G\right]$.
Define the upper central series

$$
\{1\}=Z_{0}(G) \leq Z_{1}(G) \leq Z_{2}(G) \leq \cdots
$$

by the rule that $Z_{0}(G)=\{1\}$ and $Z_{i+1}(G) / Z_{i}(G)=Z\left(G / Z_{i}(G)\right)$, where $Z(H)$ is the centre of the group H.
(a) Let H and K be normal subgroups of G, with $H \leq K$. Prove that $[K, G] \leq H$ if and only if $K / H \leq Z(G / H)$.
(b) Prove that $G^{(m)}=\{1\}$ if and only if $Z_{m}(G)=G$.

Remark A group (finite or infinite) satisfying this condition is said to be nilpotent: its nilpotency class is the smallest value of m for which these equivalent conditions hold.
(c) Prove that a finite group G is nilpotent according to this definition if and only if it satisfies the equivalent conditions of Exercise 7.8 in the book: viz.,

- every proper subgroup of G is properly contained in its normaliser;
- G is the direct product of its Sylow subgroups.

3. Define the subgroup length $\ell(G)$ of a finite group G to be the maximum number r for which there is a chain of subgroups

$$
G=G_{0}>G_{1}>\cdots>G_{r}=\{1\}
$$

of G.
(a) Show that, if N is a normal subgroup of G, then $\ell(G)=\ell(N)+\ell(G / N)$.
(b) Deduce that $\ell(G)$ is the sum of the subgroup lengths of the composition factors of G, counted with multiplicities.
(c) Deduce that, if G is soluble, then $\ell(G)$ is equal to the number of prime divisors of $|G|$, counted with multiplicities.
(d) Find a group G which satisfies the conclusion of (c) but is not soluble.
4. Let A be a finite abelian group. The dual of A is the set A^{*} of all homomorphisms from A to the multiplicative group of non-zero complex numbers, with operation defined pointwise (that is, the product of homomorphisms α and β is given by

$$
z(\alpha \beta)=(z \alpha)(z \beta)
$$

(a) Show that, if A is cyclic of order n generated by a, then A^{*} is cyclic of order n generated by α, where $a \alpha=\mathrm{e}^{2 \pi \mathrm{i}, n}$.
(b) Show that $(A \times B)^{*} \cong A^{*} \times B^{*}$.
(c) Deduce that $A^{*} \cong A$ for any finite abellian group A.
(d) Let B be a subgroup of A, and define its annihilator to be the subgroup B^{\dagger} of A^{*} defined by

$$
B^{\dagger}=\left\{\phi \in A^{*}: b \phi=1 \text { for all } b \in B\right\}
$$

Show that B^{\dagger} is a subgroup of A^{*} and $A^{*} / B^{\dagger} \cong B$.
(e) Show that, if ϕ is a non-identity element of A^{*}, then

$$
\sum_{a \in A} a \phi=0 .
$$

(f) Let M be the matrix whose rows are indexed by elements of A and columns by elements of A^{*}, wiith (a, ϕ) entry $a \phi$. Prove that

$$
M^{\top} M=n I,
$$

where $n=|A|$, and deduce that $|\operatorname{det}(M)|=n^{n / 2}$.
5. Show that the automorphism group of $C_{2} \times C_{2} \times C_{2}$ is a simple group of order 168.
6. Let a, b, c, d be elements of a finite group which satisfy

$$
b^{-1} a b=a^{2}, c^{-1} b c=b^{2}, d^{-1} c d=c^{2}, a^{-1} d a=d^{2}
$$

Prove that $a=b=c=d=1$. [Hint: Let p be the smallest prime divisor of the order of a, assumed greater than 1 , Show that the order of b is divisible by a prime divisor of $p-1$.]
7. Let G be the group of 2×2 matrices over \mathbb{Z}_{p} with determinant 1 , where p is an odd prime.
(a) Show that G contains a unique element z of order 2.
(b) For $p=3$ and $p=5$, show that $G /\langle z\rangle$ is isomorphic to the alternating group A_{4} or A_{5} respectively.
(c)* Identify the group $G /\langle z\rangle$ for $p=7$ with the simple group defined in Question 5.
8. Let G be a finite group. Let g_{1}, \ldots, g_{r} be representatives of the conjugacy classes of G (with $g_{1}=1$, and let $m_{i}=\left|C_{G}\left(g_{i}\right)\right|$ for $i=1, \ldots, r$.
medskip
(a) Show that

$$
\sum_{i=1}^{r} \frac{1}{m_{i}}=1
$$

with $m_{1}=|G|$.
(b) Show that the displayed equation in (a) has only finitely many solutions in non-negative integers m_{1}, \ldots, m_{r} for fixed r.
(c) Deduce that there are only finitely many finite groups with a given number of conjugacy classes.
(d) Find all finite groups with three or four conjugacy classes.
9. Let G be a group, and $g \in G$. The inner automorphism l_{g} induced by g is the map $x \mapsto g^{-1} x g$ of G.
(a) Prove that l_{g} is an automorphism of G.
(b) Prove that the map $\theta: G \rightarrow \operatorname{Aut}(G)$ given by $g \theta=\boldsymbol{l}_{g}$ is a homomorphism, whose image is the set $\operatorname{Inn}(G)$ of all inner automorphisms of G and whose kernel is $Z(G)$, the centre of G. Deduce that $\operatorname{Inn}(G) \cong G / Z(G)$.
(c) Prove that $\operatorname{Inn}(G)$ is a normal subgroup of $\operatorname{Aut}(G)$. (The factor group $\operatorname{Aut}(G) / \operatorname{Inn}(G)$ is called the outer automorphism group of G.)
10. Prove that every group (finite or infinite) except the trivial group and the cyclic group of order 2 has a non-identity automorphism. [You will need to use the Axiom of Choice to answer this question!]
11. Let P_{n} denote the Sylow 2-subgroup of the symmetric group of degree 2^{n}.
(a) Show that P_{n+1} has a subgroup of index 2 isomorphic to $P_{n} \times P_{n}$.
(b) Let p_{n} be the proportion of fixed-point-free elements in P_{n}, Prove that $p_{0}=0$ and

$$
p_{n+1}=\frac{1}{2}\left(1+p_{n}^{2}\right)
$$

for $n \geq 0$.
(c) Deduce that $\lim _{n \rightarrow \infty} p_{n}=1$.
(d) Prove that, in any subgroup P of $S_{2^{n}}$ which is a transitive 2-group, there is an intransitive subgroup of index 2 , and deduce that more than half of the elements of P are fixed-point-free.
(e)** For every $n>0$, construct a subgroup of $S_{2^{n}}$ which is a transitive 2-group in which fewer than two-thirds of the elements are fixed-point-free.
12. A finite group G is said to be supersoluble if it has a sequence

$$
G=G_{0}>G_{1}>\cdots>G_{r}=\{1\}
$$

of normal subgroups with the property that G_{i} / G_{i+1} is cyclic for $i=0, \ldots, r-1$. [Compare this with the property of being soluble: what is the difference?]
(a) Show that the symmetric group A_{4} is soluble but not supersoluble.
(b)* Prove that, if G is supersoluble, then the derived group G^{\prime} is nilpotent.
13. This exercise asks you to prove the following strengthening of Jordan's theorem:

Let G be a finite group acting transitively on a set Ω of n elements, where $n>1$. Then the proportion of fixed-point-free elements in G is at least $1 / n$.
(a) Let fix (g) be the number of fixed points of g in Ω. Show that fix $(g)^{2}$ is the number of fixed points of g in its coordinatewise action on the Cartesian product $\Omega \times \Omega$, and deduce that

$$
\frac{1}{|G|} \sum_{g \in G} \operatorname{fix}(g)^{2} \geq 2
$$

(b) By evaluating

$$
\sum_{g \in G}(\operatorname{fix}(g)-1)(\operatorname{fix}(g)-n),
$$

noting that only fixed-point-free elements give a positive contribution to the sum, prove the theorem stated above.
(c)* What can be concluded about a group which attains the bound? Give an example of such a group.
14. The Frattini subgroup $\Phi(G)$ of a group G is defined to be the intersection of all the maximal proper subgroups of G.
(a) Prove that $\Phi(G)$ is a normal subgroup of G.
(b) An element $g \in G$ is said to be a non-generator of G if, whenever G is generated by $A \cup\{g\}$, for some subset A of G, it actually holds that G is generated by A. Prove that an element $g \in G$ belongs to $\Phi(G)$ if and only if it is a nongenerator.
(c) Let G be a finite group. Recall the Frattini argument (Exercise 7.10 on p. 255 in the book): If H is a normal subgroup of G, and P a Sylow p-subgroup of H, then $G=H N_{G}(P)$. Deduce that the Sylow subgroups of $\Phi(G)$ are normal in G, and from this, deduce that $\Phi(G)$ is nilpotent.
(d) Now let G be a finite p-group. Prove that $\Phi(G)=1$ if and only if G is elementary abelian (a direct product of cyclic groups of order p). Hence show that, in general, $G / \Phi(G)$ is elementary abelian, and that if the cosets $\Phi(G) g_{1}, \ldots, \Phi(G) g_{r}$ form a basis for $G / \Phi(G)$ (as vector space over \mathbb{Z}_{p}, then g_{1}, \ldots, g_{r} generate G.

15 . For any group G, define two parameters as follows:

- $d(G)$ is the minimum number of elements in a generating set for G;
- $\mu(G)$ is the maximum number of elements in a minimal generating set for G (where a generating set S is minimal if no proper subset of S is a generating set).
(a) Let G be the symmetric group S_{n}, where $n \geq 3$. Show that $d(G)=2$ and $\mu(G) \geq n-1$. [Remark: In fact it was proved by Julius Whiston that $\mu(G)=n-1$, but the proof is much more complicated.]
(b) Prove that $\mu(G) \leq \ell(G)$, where $\ell(G)$ is the subgroup length of G (see Problem 3 above).
(c) Prove that, if G is a p-group, then $\mu(G)=d(G)$. Is the converse true?

16. (a)** Let A and B be nilpotent normal subgroups of a group G. Prove that $A B$ is a nilpotent normal subgroup.
(b) Deduce that G contains a unique maximal nilpotent normal subgroup. (This subgroup is called the Fitting subgroup of G, denoted by $F(G)$.)
(c) Show that, if G is a finite group, then $\Phi(G) \leq F(G)$. Give an example of a group where these two subgroups are not equal.
17. A group G is said to be finitely generated if it is generated by a finite set of elements.
(a) Prove that, if G is finitely generated and H is finite, then there are only finitely many homomorphisms from G to H.
(b) Prove that, if G is finitely generated, then the number of subgroups of G of index n is finite, for any natural number n. [Hint: A subgroup of index n gives rise to a homomorphism from G to S_{n}.]
(c) Prove that, if G is generated by d elements, then G has at most $n(n!)^{d}$ subgroups of index n for any n.
(d) Find a group which is not finitely generated but has only finitely many subgroups of index n for any n.
18. (a) Show that, if H is a proper subgroup of the finite group G, then there is a conjugacy class in G which is disjoint from H.
(b) Show that this is not the case for infinite groups. (You may wish to consider the group $G=\mathrm{GL}(n, F)$, where F is an algebraically closed field, with H the group of upper triangular matrices.)
19. Let G be a permutation group on the set $\{1, \ldots, n\}$ (a subgroup of the symmetric group $\left.S_{n}\right)$. Let $p_{i}(G)$ be the proportion of elements of G which have precisely i fixed points, and let $F_{j}(G)$ be the number of orbits of G on ordered j-tuples of distinct elements of $\{1, \ldots, n\}$. Define polynomials P and Q of degree n by

- $P(x)=\sum_{i=0}^{n} p_{i}(G) x^{i}$,
- $Q(x)=\sum_{j=0}^{n} F_{j}(G) x^{j} / j!$.
(a)* By using the Orbit-Counting Lemma, show that $Q(x)=P(x+1)$.
(b) Deduce that the proportion of fixed-point-free elements in G is equal to $Q(-1)$.
(c) In the case that $G=S_{n}$, show that

$$
Q(x)=\sum_{j=0}^{n} \frac{x^{j}}{j!},
$$

the Taylor series for e^{x} truncated to degree n. Deduce that the proportion of fixed-point-free elements in S_{n} is approximately 1/e.
20. How many groups of order 12 are there (up to isomorphism)?
21. A Steiner triple system is a pair (X, \mathscr{B}), where X is a finite set and \mathscr{B} a collection of 3-element subsets of X (called triples), such that any two distinct points of X are contained in a unique triple. Its order is the cardinality of X.

Let (X, \mathscr{B}) be a Steiner triple system. Take a new element $0 \notin X$, and define a binary operation + on $X \cup\{0\}$ by the rules

- $0+0=0$;
- $0+x=x+0=x, x+x=0$ for all $x \in X$;
- $x+y=z$ if $\{x, y, z\} \in \mathscr{B}$.
(a) Prove that $(X \cup\{0\},+)$ satisfies the closure, identity, inverse, and commutative laws.
(b) Prove that $(X \cup\{0\},+)$ satisfies the associative law if and only if (X, \mathscr{B}) has the following property:
for all distinct $u, \ldots, z \in X$, if $\{u, v, w\},\{u, x, y\},\{v, x, z\}$ are triples, then $\{w, y, z\}$ is a triple.
(c) Deduce that a Steiner triple system satisfying the displayed property in part (b) has order $2^{n}-1$ for some natural number n.
(d) Construct such a system for every $n \in \mathbb{N}$.

22. Let G be a group generated by elements x_{1}, \ldots, x_{r}. Let H be a subgroup of G of index n, and let g_{1}, \ldots, g_{n} be right coset representatives for H in G, with $g_{1}=1$. For $i=1, \ldots, n$ and $j=1, \ldots, r$, put

$$
y_{i j}=g_{i} x_{j} g_{k}^{-1} \text { where } H g_{i} x_{j}=H g_{k}
$$

(a) Show that, if $H g_{i} x_{j}=H g_{k}$, then $H g_{k} x_{j}^{-1}=H g_{i}$. Deduce that under this hypothesis $y_{i j}^{-1}=g_{k} x_{j}^{-1} g_{i}^{-1}$.
(b) Show that the elements $y_{i j}$, for $i=1, \ldots, n$ and $j=1, \ldots, r$, all belong to H.
(c) Show that the elements in (b) generate H.
(d) Deduce that a subgroup of finite index in a finitely generated group is finitely generated.
(e) By choosing the coset representatives with more care, show that H can be generated by $n r-n+1$ elements.
23. Let $X=\{1,2,3,4,5,6\}$. Following Sylvester, we define a duad to be a 2 element subset of X; a syntheme to be a partition of X into three duads; and a synthematic total (or total, for short) to be a partition of the set of duads into synthemes. Let Y be the set of totals.
(a) Show that there are 15 duads; there are 15 synthemes, each containing three duads; there are 6 totals, each containing five synthemes. Show that the symmetric group S_{6} acts in a natural way on the sets of duads, synthemes and totals.
(b) Write $Y=\left\{y_{1}, \ldots, y_{6}\right\}$. Given a permutation $g \in S_{6}$, let g^{*} be the permutation in S_{6} given by $\left(y_{i}\right) g=y_{i g^{*}}$ for $i=1, \ldots, 6$, where $\left(y_{i}\right) g$ is the image of y_{i} under the induced action defined in (a). Prove that the map $\sigma: g \mapsto g^{*}$ is an automorphism of S_{6}.
(c) Show that the stabiliser of a total fixes no point in X. Deduce that σ is an outer automorphism of S_{6} (see Problem 9).
(d) Show that a syntheme lies in exactly two totals (i.e. a "duad of totals"); a duad lies in three synthemes belonging to disjoint pairs of totals (i.e. a "syntheme of totals"; and that, given an element x of X, the five sets of three synthemes corresponding to the duads containing x cover each pair of totals once (i.e. a "total of totals").
(e) Deduce that σ^{2} is an inner automorphism of S_{6}.
(f)* Prove that the outer automorphism group of S_{6} has order 2 .
$(\mathrm{g})^{* *}$ Prove that, for $n \neq 6$, the outer automorphism group of S_{6} is trivial (that is, every automorphism is inner).

