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1. The purpose of this exercise is to construct a family of groups known as free
groups.

Let X be a set, and let X = {x : x∈X} be a set disjoint from X but in one-to-one
correspondence with it. A word is defined to be an ordered string of symbols from
the “alphabet” X ∪X . A word is reduced if it does not contain any consecutive
pair of symbols of the form xx or xx, for x ∈ X .

Consider the following process of cancellation, which can be applied to any
word w. Select any consecutive pair of symbols xx or xx in w (if such exists) and
remove it. Repeat until the word is reduced.

(a)** Given a word, there may be several different ways to apply the can-
cellation process to it. Show that the same result is obtained no matter how the
cancellation is performed.

Hint: One rather indirect way to prove this is as follows. Construct an (infinite)
tree T (X) whose edges are directed and labelled with elements of X such that, for
any vertex v and any x ∈ X , there is a unique edge with label x leaving v and a
unique edge with label x entering v. Choose a fixed starting vertex s in the tree.
Then any word describes a path starting from s: symbol x means “leave the current
vertex on the outgoing edge labelled x”, while x means “leave the current vertex
along the incoming edge labelled x”. Show that the finishing vertex of the path is
not changed by cancellation.

(b) Let F(X) denote the set of all reduced words in the alphabet X ∪X , in-
cluding the “empty word”. Define an operation on F(X) as follows: w1 ◦w2 is
obtained by concatenating the words w1 and w2 and then applying cancellation to
the result. Prove that F(X) is a group, in which the empty string is the identity
and the inverse of x is x.

(c) Let G be any group and θ : X → G an arbitrary function. Show that there
is a unique homomorphism θ ∗ : F(X)→ G whose restriction to X is θ .

The group F(X) is called the free group generated by X .

2. Let G be a group. For subgroups H,K of G, let [H,K] denote the subgroup
generated by all commutators [h,k] = h−1k−1hk, for h ∈ H and k ∈ K.
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Define the lower central series

G = G(0) ≥ G(1) ≥ G(2) ≥ ·· ·

by the rule that G(0) = G and G(i+1) = [G(i),G].
Define the upper central series

{1}= Z0(G)≤ Z1(G)≤ Z2(G)≤ ·· ·

by the rule that Z0(G) = {1} and Zi+1(G)/Zi(G) = Z(G/Zi(G)), where Z(H) is
the centre of the group H.

(a) Let H and K be normal subgroups of G, with H ≤K. Prove that [K,G]≤H
if and only if K/H ≤ Z(G/H).

(b) Prove that G(m) = {1} if and only if Zm(G) = G.

Remark A group (finite or infinite) satisfying this condition is said to be nilpo-
tent: its nilpotency class is the smallest value of m for which these equivalent
conditions hold.

(c) Prove that a finite group G is nilpotent according to this definition if and
only if it satisfies the equivalent conditions of Exercise 7.8 in the book: viz.,

• every proper subgroup of G is properly contained in its normaliser;

• G is the direct product of its Sylow subgroups.

3. Define the subgroup length `(G) of a finite group G to be the maximum number
r for which there is a chain of subgroups

G = G0 > G1 > · · ·> Gr = {1}

of G.

(a) Show that, if N is a normal subgroup of G, then `(G) = `(N)+ `(G/N).

(b) Deduce that `(G) is the sum of the subgroup lengths of the composition
factors of G, counted with multiplicities.

(c) Deduce that, if G is soluble, then `(G) is equal to the number of prime
divisors of |G|, counted with multiplicities.

(d) Find a group G which satisfies the conclusion of (c) but is not soluble.
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4. Let A be a finite abelian group. The dual of A is the set A∗ of all homomor-
phisms from A to the multiplicative group of non-zero complex numbers, with
operation defined pointwise (that is, the product of homomorphisms α and β is
given by

z(αβ ) = (zα)(zβ ).

(a) Show that, if A is cyclic of order n generated by a, then A∗ is cyclic of
order n generated by α , where aα = e2πi,n.

(b) Show that (A×B)∗ ∼= A∗×B∗.

(c) Deduce that A∗ ∼= A for any finite abellian group A.

(d) Let B be a subgroup of A, and define its annihilator to be the subgroup B†

of A∗ defined by
B† = {φ ∈ A∗ : bφ = 1 for all b ∈ B}.

Show that B† is a subgroup of A∗ and A∗/B† ∼= B.

(e) Show that, if φ is a non-identity element of A∗, then

∑
a∈A

aφ = 0.

(f) Let M be the matrix whose rows are indexed by elements of A and columns
by elements of A∗, wiith (a,φ) entry aφ . Prove that

M>M = nI,

where n = |A|, and deduce that |det(M)|= nn/2.

5. Show that the automorphism group of C2×C2×C2 is a simple group of or-
der 168.

6. Let a,b,c,d be elements of a finite group which satisfy

b−1ab = a2,c−1bc = b2,d−1cd = c2,a−1da = d2.

Prove that a = b = c = d = 1. [Hint: Let p be the smallest prime divisor of the
order of a, assumed greater than 1, Show that the order of b is divisible by a prime
divisor of p−1.]
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7. Let G be the group of 2×2 matrices over Zp with determinant 1, where p is an
odd prime.

(a) Show that G contains a unique element z of order 2.

(b) For p= 3 and p= 5, show that G/〈z〉 is isomorphic to the alternating group
A4 or A5 respectively.

(c)* Identify the group G/〈z〉 for p = 7 with the simple group defined in Ques-
tion 5.

8. Let G be a finite group. Let g1, . . . ,gr be representatives of the conjugacy
classes of G (with g1 = 1, and let mi = |CG(gi)| for i = 1, . . . ,r.

medskip
(a) Show that

r

∑
i=1

1
mi

= 1,

with m1 = |G|.

(b) Show that the displayed equation in (a) has only finitely many solutions in
non-negative integers m1, . . . ,mr for fixed r.

(c) Deduce that there are only finitely many finite groups with a given number
of conjugacy classes.

(d) Find all finite groups with three or four conjugacy classes.

9. Let G be a group, and g ∈ G. The inner automorphism ιg induced by g is the
map x 7→ g−1xg of G.

(a) Prove that ιg is an automorphism of G.

(b) Prove that the map θ : G→Aut(G) given by gθ = ιg is a homomorphism,
whose image is the set Inn(G) of all inner automorphisms of G and whose kernel
is Z(G), the centre of G. Deduce that Inn(G)∼= G/Z(G).

(c) Prove that Inn(G) is a normal subgroup of Aut(G). (The factor group
Aut(G)/ Inn(G) is called the outer automorphism group of G.)

10. Prove that every group (finite or infinite) except the trivial group and the
cyclic group of order 2 has a non-identity automorphism. [You will need to use
the Axiom of Choice to answer this question!]
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11. Let Pn denote the Sylow 2-subgroup of the symmetric group of degree 2n.

(a) Show that Pn+1 has a subgroup of index 2 isomorphic to Pn×Pn.

(b) Let pn be the proportion of fixed-point-free elements in Pn, Prove that
p0 = 0 and

pn+1 =
1
2(1+ p2

n)

for n≥ 0.

(c) Deduce that limn→∞ pn = 1.

(d) Prove that, in any subgroup P of S2n which is a transitive 2-group, there is
an intransitive subgroup of index 2, and deduce that more than half of the elements
of P are fixed-point-free.

(e)** For every n> 0, construct a subgroup of S2n which is a transitive 2-group
in which fewer than two-thirds of the elements are fixed-point-free.

12. A finite group G is said to be supersoluble if it has a sequence

G = G0 > G1 > · · ·> Gr = {1}

of normal subgroups with the property that Gi/Gi+1 is cyclic for i = 0, . . . ,r−1.
[Compare this with the property of being soluble: what is the difference?]

(a) Show that the symmetric group A4 is soluble but not supersoluble.

(b)* Prove that, if G is supersoluble, then the derived group G′ is nilpotent.

13. This exercise asks you to prove the following strengthening of Jordan’s theo-
rem:

Let G be a finite group acting transitively on a set Ω of n elements,
where n > 1. Then the proportion of fixed-point-free elements in G is
at least 1/n.

(a) Let fix(g) be the number of fixed points of g in Ω. Show that fix(g)2 is the
number of fixed points of g in its coordinatewise action on the Cartesian product
Ω×Ω, and deduce that

1
|G| ∑g∈G

fix(g)2 ≥ 2.
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(b) By evaluating
∑

g∈G
(fix(g)−1)(fix(g)−n),

noting that only fixed-point-free elements give a positive contribution to the sum,
prove the theorem stated above.

(c)* What can be concluded about a group which attains the bound? Give an
example of such a group.

14. The Frattini subgroup Φ(G) of a group G is defined to be the intersection of
all the maximal proper subgroups of G.

(a) Prove that Φ(G) is a normal subgroup of G.

(b) An element g ∈ G is said to be a non-generator of G if, whenever G is
generated by A∪{g}, for some subset A of G, it actually holds that G is generated
by A. Prove that an element g ∈ G belongs to Φ(G) if and only if it is a non-
generator.

(c) Let G be a finite group. Recall the Frattini argument (Exercise 7.10 on
p.255 in the book): If H is a normal subgroup of G, and P a Sylow p-subgroup of
H, then G = HNG(P). Deduce that the Sylow subgroups of Φ(G) are normal in
G, and from this, deduce that Φ(G) is nilpotent.

(d) Now let G be a finite p-group. Prove that Φ(G) = 1 if and only if G is ele-
mentary abelian (a direct product of cyclic groups of order p). Hence show that, in
general, G/Φ(G) is elementary abelian, and that if the cosets Φ(G)g1, . . . ,Φ(G)gr
form a basis for G/Φ(G) (as vector space over Zp, then g1, . . . ,gr generate G.

15. For any group G, define two parameters as follows:

• d(G) is the minimum number of elements in a generating set for G;

• µ(G) is the maximum number of elements in a minimal generating set for G
(where a generating set S is minimal if no proper subset of S is a generating
set).

(a) Let G be the symmetric group Sn, where n ≥ 3. Show that d(G) = 2 and
µ(G)≥ n−1. [Remark: In fact it was proved by Julius Whiston that µ(G)= n−1,
but the proof is much more complicated.]

(b) Prove that µ(G) ≤ `(G), where `(G) is the subgroup length of G (see
Problem 3 above).

(c) Prove that, if G is a p-group, then µ(G) = d(G). Is the converse true?
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16. (a)** Let A and B be nilpotent normal subgroups of a group G. Prove that AB
is a nilpotent normal subgroup.

(b) Deduce that G contains a unique maximal nilpotent normal subgroup.
(This subgroup is called the Fitting subgroup of G, denoted by F(G).)

(c) Show that, if G is a finite group, then Φ(G)≤ F(G). Give an example of a
group where these two subgroups are not equal.

17. A group G is said to be finitely generated if it is generated by a finite set of
elements.

(a) Prove that, if G is finitely generated and H is finite, then there are only
finitely many homomorphisms from G to H.

(b) Prove that, if G is finitely generated, then the number of subgroups of G
of index n is finite, for any natural number n. [Hint: A subgroup of index n gives
rise to a homomorphism from G to Sn.]

(c) Prove that, if G is generated by d elements, then G has at most n(n!)d

subgroups of index n for any n.

(d) Find a group which is not finitely generated but has only finitely many
subgroups of index n for any n.

18. (a) Show that, if H is a proper subgroup of the finite group G, then there is a
conjugacy class in G which is disjoint from H.

(b) Show that this is not the case for infinite groups. (You may wish to consider
the group G=GL(n,F), where F is an algebraically closed field, with H the group
of upper triangular matrices.)

19. Let G be a permutation group on the set {1, . . . ,n} (a subgroup of the symmet-
ric group Sn). Let pi(G) be the proportion of elements of G which have precisely
i fixed points, and let Fj(G) be the number of orbits of G on ordered j-tuples of
distinct elements of {1, . . . ,n}. Define polynomials P and Q of degree n by

• P(x) =
n

∑
i=0

pi(G)xi,

• Q(x) =
n

∑
j=0

Fj(G)x j/ j!.
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(a)* By using the Orbit-Counting Lemma, show that Q(x) = P(x+1).

(b) Deduce that the proportion of fixed-point-free elements in G is equal to
Q(−1).

(c) In the case that G = Sn, show that

Q(x) =
n

∑
j=0

x j

j!
,

the Taylor series for ex truncated to degree n. Deduce that the proportion of fixed-
point-free elements in Sn is approximately 1/e.

20. How many groups of order 12 are there (up to isomorphism)?

21. A Steiner triple system is a pair (X ,B), where X is a finite set and B a
collection of 3-element subsets of X (called triples), such that any two distinct
points of X are contained in a unique triple. Its order is the cardinality of X .

Let (X ,B) be a Steiner triple system. Take a new element 0 /∈ X , and define a
binary operation + on X ∪{0} by the rules

• 0+0 = 0;

• 0+ x = x+0 = x, x+ x = 0 for all x ∈ X ;

• x+ y = z if {x,y,z} ∈B.

(a) Prove that (X ∪{0},+) satisfies the closure, identity, inverse, and commu-
tative laws.

(b) Prove that (X ∪{0},+) satisfies the associative law if and only if (X ,B)
has the following property:

for all distinct u, . . . ,z ∈ X , if {u,v,w}, {u,x,y}, {v,x,z} are triples,
then {w,y,z} is a triple.

(c) Deduce that a Steiner triple system satisfying the displayed property in part
(b) has order 2n−1 for some natural number n.

(d) Construct such a system for every n ∈ N.
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22. Let G be a group generated by elements x1, . . . ,xr. Let H be a subgroup of G
of index n, and let g1, . . . ,gn be right coset representatives for H in G, with g1 = 1.
For i = 1, . . . ,n and j = 1, . . . ,r, put

yi j = gix jg−1
k where Hgix j = Hgk.

(a) Show that, if Hgix j = Hgk, then Hgkx−1
j = Hgi. Deduce that under this

hypothesis y−1
i j = gkx−1

j g−1
i .

(b) Show that the elements yi j, for i = 1, . . . ,n and j = 1, . . . ,r, all belong to
H.

(c) Show that the elements in (b) generate H.

(d) Deduce that a subgroup of finite index in a finitely generated group is
finitely generated.

(e) By choosing the coset representatives with more care, show that H can be
generated by nr−n+1 elements.

23. Let X = {1,2,3,4,5,6}. Following Sylvester, we define a duad to be a 2-
element subset of X ; a syntheme to be a partition of X into three duads; and a
synthematic total (or total, for short) to be a partition of the set of duads into
synthemes. Let Y be the set of totals.

(a) Show that there are 15 duads; there are 15 synthemes, each containing three
duads; there are 6 totals, each containing five synthemes. Show that the symmetric
group S6 acts in a natural way on the sets of duads, synthemes and totals.

(b) Write Y = {y1, . . . ,y6}. Given a permutation g ∈ S6, let g∗ be the per-
mutation in S6 given by (yi)g = yig∗ for i = 1, . . . ,6, where (yi)g is the image of
yi under the induced action defined in (a). Prove that the map σ : g 7→ g∗ is an
automorphism of S6.

(c) Show that the stabiliser of a total fixes no point in X . Deduce that σ is an
outer automorphism of S6 (see Problem 9).

(d) Show that a syntheme lies in exactly two totals (i.e. a “duad of totals”); a
duad lies in three synthemes belonging to disjoint pairs of totals (i.e. a “syntheme
of totals”; and that, given an element x of X , the five sets of three synthemes
corresponding to the duads containing x cover each pair of totals once (i.e. a
“total of totals”).
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(e) Deduce that σ2 is an inner automorphism of S6.

(f)* Prove that the outer automorphism group of S6 has order 2.

(g)** Prove that, for n 6= 6, the outer automorphism group of S6 is trivial (that
is, every automorphism is inner).
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