Sets, Logic and Categories
Solutions to Exercises: Chapter 1

‘ 1.1 Show that the empty set is a subset of every set.

Letx be any set. Then for any setthe implication(z € 0) = (z € x) is true, since
(z€ 0) is false; thu C x.

1.2 Which of the following equations are true? If the equation is not true, is one side
a subset of the other?

@uerX=X.

(b) PUX = X.
(c)UPX=2PUX.

(d) P(X xY) = PX x PY.
(e) P(XUY)=PXUPY.

() True. Ifx e X, then{x} € P X, and sax € |y P X. Conversely, ik € | JP X, then
x €Y for someY € PX; thenY C X, and sax € X.

(b) False. IfX = {{1}}, thenUX = {1}, andPUX = {0, {1} }.

Itis true thatX C PJX. For takex € X. Then every element ofis contained in
UX,soxC X, thatis,xe PUX.

(c) From (a) and (b) we see that these two sets are not equiglBxt C P X.

(d) False. IfX hasm elements and’ hasn elements, ther?(X x Y) has 2™
elements whileP X x PY has 2" elements. lin= n = 1, then the second is greater
than the first, while ifm = n = 3, the first is greater than the second. So neither of the
sets can be a subset of the other for all choices ahdY. (You should also try to give
specific examples to refute both inclusions.)

(e) False. IiX = {1} andY = {2}, then the se{1,2} belongs taP(X UY) but not
toPXor PY.

Itis true that? X UPY C P(XUY). For every subset of eithet orY is a subset
of XUY.

1.3 Prove that each of the following %ot a suitable definition of the ordered pa
(X,y):

@ (%y) = {x{y}}-
(b) (x,y) = {{x},{y}}-

r

(a) In this case we would hav¢1},2) = ({2},1).
(b) In this cas€1,2) = (2,1).



1.4 Which of the following would be a suitable definition of the ordered trjple
(%,¥,2)?

@ (x¥.2) ={(xY),(y,2)}.
(b) (x,¥,2) = ((x,¥), (¥,2)).
(©) (x,¥,2) = {{x}, {x, ¥}, {x,y, 2} }.

(@) No: (1,2,1) = (2,1,2).

(b) Yes: if ((x1,y1), (Y1,21)) = ((%2,¥2), (Y2, 22)), then(xq, y1) = (X2, Y2) and(y1,z1) =
(Y2,22), SOX1 = X2, Y1 = Y2 andz; = 2.

(c)No: (1,1,2) = (1,2,2).
1.5 Let G be a group, anX a set. Anactionof G on X is a functionp: X x G — X
satisfying the rules

® U(X,gh) = u(u(x,9),h) forallg,h € G, x € X;

e U(x,1) = xfor all x € X, where 1 is the identity element Gf.

(a) Prove that

o H(K(%,9),g ) = M(u(x,g 1),g) =xforall xe X, ge G.

(b) Define a relation- on X by the rule thak ~ yif and only if p(x, g) = y for some|
g € G. Show that~ is an equivalence relation.

(c) Show that each of the following equivalence relations on the set of:alh real
matrices arises from a group action:

e row-equivalenceA andB are row-equivalent if some sequence of elemen-
tary row operations transforn#sto B);
e equivalence A andB are equivalent if some sequence of elementary|row
and column operations transforgo B);
e conjugacy, form= n (A andB are conjugate iB = P~1AP for some invert
ible matrixP);
e congruence, fom= n (A andB are congruent iB= P AP for some invert
ible matrixP, whereP is the transpose d%).

(d) If H is a subgroup o6, andH acts onG by right multiplication(that is,u(x, h) =
xh), then the orbits oH are itsleft cosetsn G.

(e) If G acts on itself byconjugation(that is,(x,g) = g~xg), then the orbits 06
are theconjugacy classes

(@ u(u(x,0),g71) = u(x,gg71) = u(x, 1) = x. The other equation is similar.



(b) The reflexive law follows from the second axiom for an action; the symmetric
law from the result of (a); and the transitive law from the first axiom.

(c) Let GL(n,R) denote the group of invertiblex n real matrices. Now the appro-
priate groups and actions are:
e G=GL(mR), WA P) =P tAforPc G,
e G=GL(MmR) x GL(n,R), muA, (P,Q)) = P1AQfor (P,Q) € G
e G=GL(mR), WA P) =P tAPforPcG;

(m,R), u(A,P) =P"APfor P c G.

(d) Verifying that this is an action is straightforward. The orbit of the elemenG
is{xh:heH} =xH.

(e) Verifying that this is an action is straightforward. This is the definition of con-
jugacy classes.

1.6 Suppose thatis an action of the grou@ on the seK, as defined in the preceding
exercise. Show that, for alge G, the functionx — p(x,g) is a bijection fromX to
X.

Let fg be the functiorx— p(x,g). To show thatfy is injective, suppose thd(x) =
fg(y), that is,u(x,9) = H(y,9). Then

X=H(x1) = W(K(x,9),g7) = W(K(Y,9),g ) = Ky, 1) =V.
To show thatfg is surjective, take € X, and letx = p(x, g Y). Then
=H(z1) = WWz9),9) = Mx9) = fg(x),

as required.

1.7 Show that the composition of injective functions is injective, and the composition
of surjective functions is surjective.

Letf: X —Y andg:Y — Z be functions.

Suppose that andg are injective, and thafgo f)(x) = (g
That is,g(f(x)) = g(f(X)). By the injectivity ofg, we havef (x
injectivity of f, we havex=x. Thusgo f is injective.

Now suppose that andg are surjective. Choosec Z. By injectivity of g, there
existsy € Y with g(y) = z then by injectivity off, there existsx € X with f(x) =y.
Thus,(go f)(x) = g(f(x)) = g(y) = z andgo f is surjective.

1.8 LetX #0, let f : X — Y be a function, and lek andiy be the identity function
onX andY respectively. Prove that

o f)(xX) for x,x' € X.
) = f(X); and by the
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(a) f is injective if and only if there exists a functigit Y — X such thatf og =iy;

(b) f is surjective if and only if there exists a functibnY — X such thato f =1iy.

Where (if anywhere) have you used the Axiom of Choice in this proof?




(a) Let f be injective. Defingy: Y — X as in Theorem 1.8. Thehog = ix.

Conversely, suppose théb g =ix, and letf(x1) = f(x2). Thenxy = g(f(x1)) =
g(f(x2)) = x. Sof is injective.

(b) Let f be surjective. For eaghe Y choosex € X with f(x) =y (here the Axiom
of Choice is used), and defite Y — X by h(y) = x. Thenho f = iy.

Conversely, suppose thab f = iy, and choosg € Y. Thenf mapsh(y) toy; so f
is surjective.

1.9 LetX # 0 and letf : X — Y be a function.

(a) Prove thaf is injective if and only ifhy o f = hy o f implieshy = hy, for any two
functionshy,hy 1Y — X.

(b) Prove thatf is surjective if and only iff o g; = f o gz impliesg; = gp, for any
two functionsg, gz : Y — X.

Where (if anywhere) have you used the Axiom of Choice in this proof?

(a) Let f be injective anchy o f = hyo f. Suppose that; # hyp. Then there ex-
istsy € Y with hi(y) # ha(y), whencef(hi(y)) # f(ha(y)) (since f is injective), a
contradiction.

Conversely, suppose théis not injective; letf (x;) = f(x2). Definehy,hy 1Y — X
by hi(y) =x; forally e Y (i =1,2). Thenf(hi(y)) = f(ha(y)) for all y €Y, that is,
hiof =hyof, buthy # hy.

(b) Let f be surjective and og; = fog,. That is,g1(f(x)) = g2(f(x)) for all
x € X. For everyy €Y, there existx € X with f(x) =y; thus,g1(y) = g2(y) for all
yeY,org: = 0.

Conversely, suppose thétis not surjective; suppose thgtc Y is such that no
elementx € X satisfiesf(x) =y. Letg; :Y — X be any function, and, : Y — X
a function which agrees with; everywhere except at with gi(y) # g2(y). Then
fogr=fogz butg: # ge.

The Axiom of Choice is not used, but in (b) we do need to assumexthas more
than one element.

1.10 Let Rbe a relation betweeX andY. Define theconverseof Rto be the relation
betweeny andX defined by reversing all the pairs i

R ={(y,%): (y,X) €R}.

Show that the converse of a functidnis a function if and only iff is bijective (in
which casef* is the inverse of).

Suppose thaf is a function whose converse is a function. That means, for any
y €Y, there is exactly one € X such thaiy,x) € f* (that is, such thag = f(x)). This
shows thaff is both injective and surjective, arfd is its inverse.

Conversely, iff is a bijection, then it has an inverse function, which is its converse
(as arelation).



1.11 Let X andY be finite sets, withm and n elements respectively. How many
elements are there in each of the following sets?

(@) PX.
(b) X xY.
(c) The set of relations frofX to Y.

(d) The sefycy Xy, whereXy, =X forally € Y.

(@ 2% (b) mny (c) 2™ (d) m",
1.12 Show that

(a) any finite partially ordered set has a minimal element;
(b) any two (strict) total orders on a finite set are isomorphic;

(c) any (strict) partial order on a finite sktis contained in a (strict) total order on
X.

(a) Chooseg € X. If it is not minimal, choose; < Xg, and so on. This descending
chain has no repetitions, so must terminate in a minimal element.

(b) The unique minimal element of a finite totally ordered set is its least element.
Given two finite totally ordered sets of the same size, match their least elements, and
proceed by induction.

(c) LetR be a non-strict partial order of, whereX is finite. Suppose tha is not
total, so that there exist incomparable elementsc X. Let

R" =RU{(x,y) € XxX:(x,a),(b,y) € R}.

Case analysis shows that is a partial order containing. After finitely many steps
of this kind, we reach a total order.

1.13 Let R be a reflexive and transitive relation on a Xet
(a) Define a relatioison X by
S={(xy): (xy),(¥.x) €R}.
Show thatSis an equivalence relation ofi
(b) Define a relatiom on the seX/Sof S-classes iX by
T ={(Sx),9y)): (xy) €R}.

Show thafT is a non-strict order oiX /S,




(a) For allx € X, we have(x,x), (x,x) € R, so(x,x) € S, that is,Sis reflexive. It is
clearly symmetric. Suppose th@aty), (y,z) € S Then(x,y), (¥,X), (¥,2),(zy) € R As
Ris transitive, the first and third pairs show tfigtz) € R, while the fourth and second
show that(z,x) € R. Hence(x,z) € S, andSis transitive.

(b) First, observe that ifS(x),S(y)) € T, then(X,y’) € Rfor all X € §x), Y €
S(y). For se havex',x),(x,y),(y,Y) € R, now apply the transitive law twice. So the
definition of T is independent of the choice of equivalence class representatives.

For allx € X, we have(x,x) € R, so(S(x),S(x)) € T. SoT is reflexive. A similar
argument shows that it is transitive. Now suppose {&ét),S(y)), (S(y),S(x)) € T.
Then(x,y), (y,X) € R, whence(x,y) € SandS(x) = S(y). SoT is antisymmetric.

1.14
(a) Show that the cartesian product of finitely many copie &f countable.

(b) LetX be a countable set. Show that the$&bf all finite sequences of elements
of X is countable.

(c) Prove that the set aflgebraic numbergthose which satisfy some polynomjal
equation with integer coefficients) is countable. Prove that the sedgcen-
dental numberg¢those real numbers which are not algebraic) is uncountab

e.

(a) We show thalN" is countable by induction on. The assertion is clearly true
for n= 1. Suppose tha¥" is countable. Then

Nl =N"x N

is the cartesian product of two countable sets, so is countable.

(b) The set ofn-tuples of elements oX is countable, by part (a). S¥* is the
union of countably many countable sets (namé€Nfor each natural numbe), so is
countable.

(c) A polynomial equation of degraeis specified byn+ 1 coefficients. By part
(b), the set of equations is countable. But an equation of deghees at mosh real
roots. So the set of algebraic numbers is the union of countably many countable sets,
hence countable.

If the set of transcendental numbers were countable, then the set of all real numbers
would be the union of two countable sets, whence countable, which it is not. So the set
of transcendental numbers is uncountable.

This is Cantor’s proof of the existence of transcendental numbers: an uncountable
set cannot be empty!



1.15

(a) Show that there is a bijection betweRmnd the open intervdD, 1).

1%

(b) Show that there is a bijection between the intef@al) and the interior of the
unit square.

(c) Deduce that® has the same cardinality &

(a) The functiorx — arctar{Ti(x — %)) is a bijection.

(b) Represent numbers if®,1) by their decimal expansions, with the conven-
tion that terminating decimals are represented by infinite decimals which are zero
(rather than nine) from some point on. Now to the gaily) of real numbers, where
X=0.X1X2... andy = 0.y1¥>..., corresponds the real numbes 0.x1y>X2y>. ... This
function is clearly one-to-one, and its image contains all real numbers except those
whose decimal expansion from some point on reads 09090Bhere are only count-
ably many of these (they are all rational). So the function can be adjusted to give a
bijection between the interval and the square.

(c) By (a), the se€ has the same cardinality as the interior of the unit square, hence
as the open unit interval, hencelRs

1.16 Let (X, <) be a countable totally ordered set. Suppose that
(a) X isdensethat is, ifx < y, then there existswith x < z< y.
(b) X has no least or greatest element.

Prove thaiX is order-isomorphic t@).

EnumerateX = (Xg, X1, ...) andQ = (qo, 0, - . .).
Now define, inductively, a map: X — Q as follows:

(a) f(x0) = Qo.

(b) Suppose that(Xp), ..., f(xn—1) have been defined. Then thgointsxo, ..., Xn-1
divide X into n+ 1 intervals (including two semi-infinite intervalsy; lies in
one of these intervals, s&y;,x;). Now the corresponding intervéaf (x), f(x;j))
in Q is non-empty. Choose the rational numiggrwith smallest index in this
interval, and defind (xn) = gh.

The functionf defined in this way is certainly one-to-one. It is order-preserving:
for the construction ensures that the order relation holding betwéey) and each
f(x) fori < nis the same as that betwegnandx;. The difficult part is to show thaft
is onto.

Suppose, for a contradiction, thits not onto. Letyy, be the rational with smallest
index which is not in the image of. Thenqp,...,gm-1 are all in the image of.
Choosen such that

{do,- - Om-1} € {f(x0),---, F(*n-1)}-



Now g, lies in one of then+ 1 intervals into which the line is divided by thepoints
f(X0),..., f(Xn—1); saydm € (f(x), f(xj)). The corresponding intervak;,x;) in X
is non-empty (by the densenessX)f Let x, be the point ofX in this interval with
smallest index. When we come to defiffe ), we findx; € (x;,Xj), so we must choose
f () to be the rational with smallest index {ffi(x;), f(x;)). But this isgm, since all of
Jo, - --,0m-1 have already been chosen. Thfis) = gm, contrary to the assumption
thatqgn, is not in the image of.

If gm is in one of the semi-infinite intervals at either end, then the argument is sim-
ilar, but using the fact thaX has no least or greatest element instead of the denseness
of X.

Thusf is onto, and so is an order-isomorphism.

1.17 Use the same method to prove that any countable totally ordered set is isomor-
phic to a subset af.

Define the functionf as in the preceding question. As before, it is one-to-one and
order-preserving. This is all that is required; we don't have to prove that it is onto (and,
of course, it need not be).

1.18 Forn > 0, define a functiorf : ?,(N) — N by the rule

f({X0, X1, Xn_1}) = (Xf> n <X21> T (Xnnl)’

wherexg < X1 < --- < Xn_1. Prove thatf is a bijection.

First we make the following observation:

FX— N+ LX—N+2,....x}) = (X:l> _1

For this, we use the standard identity

(ri/l) " (Br/) - (yﬁ)

for binomial coefficients. Now, if we add one to the left-hand side of the first equation,
the first two terms become

(T30

this term then adds to the next tefffi ) to give (*"37); the process continues like

a row of dominoes until we have a single tefifj*).

Now we show thatf is a bijection by showing that there is a unique solution
(X, - .-, %n—1) of the equatiorf ({Xp, ...,Xn—1}) = N with xp < ... < X,_1. The proofis
by induction om. Suppose that

RN
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Then we must choose, 1 =Y, since ifx,_1 = X then the maximum possible value
of f({Xo....,Xn—1}) would be (*!*) — 1, by our earlier calculation. Then we have to

choosexg,...,X,_2 so that

n

f(fr0. w02 =N - (¥).
By the inductive hypothesis, there is a unigue solution; and this solution satisfies

) 0)-()

The result is proved.
The induction begins since for= 1 the functionf is simply given byf ({x}) = x.

1.19 Prove that the following two statements are equivalent.
(a) The cartesian product of any family of non-empty sets is non-empty.

(b) Let P be a partition ofX. Then there is a subs¥tof X which contains exactly
one element from each memberrf

Assume (a) (the Axiom of Choice), and IBtbe a partition ofX. Let F be the
identity function onP. ThenF(p) = p# 0 for all p € P. Let f be a choice function,
andY = {f(p): pe P}. Then, forevenpeP,YNnp={f(p)}.

Conversely, assume (b), and Febe any function orX such that (X) # 0 for all
xeX. LetZ={(xy):yeF(x),xe X}. NowP = {{x} x F(x) : xe X} is a partition
of Z. Choose a sef meeting every set of this partition in just one point. Thus, for each
x € X, there is a uniqug € F(x) such tha(x,y) € Y. NowY is itself a choice function
for F.

1.20 Use the Axiom of Choice to show that, if there is a surjection fdoto X, then
there is an injection fronX toY.

Let g be a surjection fronY to X. LetF be the function fronX to 2Y given by

FX)={yeY:g(y) =x}.

By assumptionF (x) # 0 for all x € X. Let f be a choice function fof. Thenf(x) €
F(x) CY forall x e X, thatis,f is a function fromX to Y. Now clearly ifx; # Xz, then
F(x1) andF (x2) are disjoint, sof (x1) # f(x2); so f is an injection.



