
Sets, Logic and Categories
Solutions to Exercises: Chapter 1

1.1 Show that the empty set is a subset of every set.

Let x be any set. Then for any setz, the implication(z∈ /0)⇒ (z∈ x) is true, since
(z∈ /0) is false; thus/0⊆ x.

1.2 Which of the following equations are true? If the equation is not true, is one side
a subset of the other?

(a)
⋃

P X = X.

(b) P
⋃

X = X.

(c)
⋃

P X = P
⋃

X.

(d) P (X×Y) = P X×P Y.

(e) P (X∪Y) = P X∪P Y.

(a) True. Ifx∈X, then{x} ∈ P X, and sox∈
⋃

P X. Conversely, ifx∈
⋃

P X, then
x∈Y for someY ∈ P X; thenY ⊆ X, and sox∈ X.

(b) False. IfX = {{1}}, then
⋃

X = {1}, andP
⋃

X = { /0,{1}}.
It is true thatX ⊆ P

⋃
X. For takex∈ X. Then every element ofx is contained in⋃

X, sox⊆
⋃

X, that is,x∈ P
⋃

X.

(c) From (a) and (b) we see that these two sets are not equal but
⋃

P X ⊆ P
⋃

X.

(d) False. IfX hasm elements andY hasn elements, thenP (X×Y) has 2mn

elements whileP X×P Y has 2m+n elements. Ifm= n = 1, then the second is greater
than the first, while ifm= n = 3, the first is greater than the second. So neither of the
sets can be a subset of the other for all choices ofX andY. (You should also try to give
specific examples to refute both inclusions.)

(e) False. IfX = {1} andY = {2}, then the set{1,2} belongs toP (X∪Y) but not
to P X or P Y.

It is true thatP X∪P Y ⊆ P (X∪Y). For every subset of eitherX or Y is a subset
of X∪Y.

1.3 Prove that each of the following isnot a suitable definition of the ordered pair
(x,y):

(a) (x,y) = {x,{y}}.

(b) (x,y) = {{x},{y}}.

(a) In this case we would have({1},2) = ({2},1).
(b) In this case(1,2) = (2,1).
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1.4 Which of the following would be a suitable definition of the ordered triple
(x,y,z)?

(a) (x,y,z) = {(x,y),(y,z)}.

(b) (x,y,z) = ((x,y),(y,z)).

(c) (x,y,z) = {{x},{x,y},{x,y,z}}.

(a) No: (1,2,1) = (2,1,2).
(b) Yes: if((x1,y1),(y1,z1)) = ((x2,y2),(y2,z2)), then(x1,y1) = (x2,y2) and(y1,z1) =

(y2,z2), sox1 = x2, y1 = y2 andz1 = z2.

(c) No: (1,1,2) = (1,2,2).

1.5 Let G be a group, andX a set. Anactionof G on X is a functionµ : X×G→ X
satisfying the rules

• µ(x,gh) = µ(µ(x,g),h) for all g,h∈G, x∈ X;

• µ(x,1) = x for all x∈ X, where 1 is the identity element ofG.

(a) Prove that

• µ(µ(x,g),g−1) = µ(µ(x,g−1),g) = x for all x∈ X, g∈G.

(b) Define a relation∼ onX by the rule thatx∼ y if and only if µ(x,g) = y for some
g∈G. Show that∼ is an equivalence relation.

(c) Show that each of the following equivalence relations on the set of allm×n real
matrices arises from a group action:

• row-equivalence (A andB are row-equivalent if some sequence of elemen-
tary row operations transformsA to B);

• equivalence (A andB are equivalent if some sequence of elementary row
and column operations transformsA to B);

• conjugacy, form= n (A andB are conjugate ifB = P−1AP for some invert-
ible matrixP);

• congruence, form= n (A andB are congruent ifB = P>AP for some invert-
ible matrixP, whereP> is the transpose ofP).

(d) If H is a subgroup ofG, andH acts onG by right multiplication(that is,µ(x,h) =
xh), then the orbits ofH are itsleft cosetsin G.

(e) If G acts on itself byconjugation(that is,µ(x,g) = g−1xg), then the orbits ofG
are theconjugacy classes.

(a)µ(µ(x,g),g−1) = µ(x,gg−1) = µ(x,1) = x. The other equation is similar.
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(b) The reflexive law follows from the second axiom for an action; the symmetric
law from the result of (a); and the transitive law from the first axiom.

(c) Let GL(n,R) denote the group of invertiblen×n real matrices. Now the appro-
priate groups and actions are:

• G = GL(m,R), µ(A,P) = P−1A for P∈G;

• G = GL(m,R)×GL(n,R), mu(A,(P,Q)) = P−1AQ for (P,Q) ∈G;

• G = GL(m,R), µ(A,P) = P−1AP for P∈G;

• G = GL(m,R), µ(A,P) = P>AP for P∈G.

(d) Verifying that this is an action is straightforward. The orbit of the elementx∈G
is {xh : h∈ H}= xH.

(e) Verifying that this is an action is straightforward. This is the definition of con-
jugacy classes.

1.6 Suppose thatµ is an action of the groupG on the setX, as defined in the preceding
exercise. Show that, for anyg∈ G, the functionx 7→ µ(x,g) is a bijection fromX to
X.

Let fg be the functionx 7→ µ(x,g). To show thatfg is injective, suppose thatfg(x) =
fg(y), that is,µ(x,g) = µ(y,g). Then

x = µ(x,1) = µ(µ(x,g),g−1) = µ(µ(y,g),g−1) = µ(y,1) = y.

To show thatfg is surjective, takez∈ X, and letx = µ(x,g−1). Then

z= µ(z,1) = µ(µ(z,g−1),g) = µ(x,g) = fg(x),

as required.

1.7 Show that the composition of injective functions is injective, and the composition
of surjective functions is surjective.

Let f : X→Y andg : Y→ Z be functions.
Suppose thatf andg are injective, and that(g◦ f )(x) = (g◦ f )(x′) for x,x′ ∈ X.

That is,g( f (x)) = g( f (x′)). By the injectivity ofg, we havef (x) = f (x′); and by the
injectivity of f , we havex = x′. Thusg◦ f is injective.

Now suppose thatf andg are surjective. Choosez∈ Z. By injectivity of g, there
existsy∈ Y with g(y) = z; then by injectivity of f , there existsx∈ X with f (x) = y.
Thus,(g◦ f )(x) = g( f (x)) = g(y) = z, andg◦ f is surjective.

1.8 Let X 6= /0, let f : X→Y be a function, and letiX andiY be the identity functions
onX andY respectively. Prove that

(a) f is injective if and only if there exists a functiong : Y→ X such thatf ◦g = iX;

(b) f is surjective if and only if there exists a functionh : Y→X such thath◦ f = iY.

Where (if anywhere) have you used the Axiom of Choice in this proof?
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(a) Let f be injective. Defineg : Y→ X as in Theorem 1.8. Thenf ◦g = iX.
Conversely, suppose thatf ◦g = iX, and let f (x1) = f (x2). Thenx1 = g( f (x1)) =

g( f (x2)) = x2. So f is injective.

(b) Let f be surjective. For eachy∈Y choosex∈ X with f (x) = y (here the Axiom
of Choice is used), and defineh : Y→ X by h(y) = x. Thenh◦ f = iY.

Conversely, suppose thath◦ f = iY, and choosey∈Y. Then f mapsh(y) to y; so f
is surjective.

1.9 Let X 6= /0 and let f : X→Y be a function.

(a) Prove thatf is injective if and only ifh1◦ f = h2◦ f impliesh1 = h2, for any two
functionsh1,h2 : Y→ X.

(b) Prove thatf is surjective if and only iff ◦g1 = f ◦g2 impliesg1 = g2, for any
two functionsg1,g2 : Y→ X.

Where (if anywhere) have you used the Axiom of Choice in this proof?

(a) Let f be injective andh1 ◦ f = h2 ◦ f . Suppose thath1 6= h2. Then there ex-
ists y ∈ Y with h1(y) 6= h2(y), whence f (h1(y)) 6= f (h2(y)) (since f is injective), a
contradiction.

Conversely, suppose thatf is not injective; letf (x1) = f (x2). Defineh1,h2 : Y→X
by hi(y) = xi for all y∈ Y (i = 1,2). Then f (h1(y)) = f (h2(y)) for all y∈ Y, that is,
h1◦ f = h2◦ f , buth1 6= h2.

(b) Let f be surjective andf ◦ g1 = f ◦ g2. That is,g1( f (x)) = g2( f (x)) for all
x ∈ X. For everyy ∈ Y, there existsx ∈ X with f (x) = y; thus,g1(y) = g2(y) for all
y∈Y, or g1 = g2.

Conversely, suppose thatf is not surjective; suppose thaty ∈ Y is such that no
elementx ∈ X satisfiesf (x) = y. Let g1 : Y→ X be any function, andg2 : Y→ X
a function which agrees withg1 everywhere except aty, with g1(y) 6= g2(y). Then
f ◦g1 = f ◦g2 butg1 6= g2.

The Axiom of Choice is not used, but in (b) we do need to assume thatX has more
than one element.

1.10 Let Rbe a relation betweenX andY. Define theconverseof R to be the relation
betweenY andX defined by reversing all the pairs inR:

R∗ = {(y,x) : (y,x) ∈ R}.

Show that the converse of a functionf is a function if and only iff is bijective (in
which casef ∗ is the inverse off ).

Suppose thatf is a function whose converse is a function. That means, for any
y∈Y, there is exactly onex∈ X such that(y,x) ∈ f ∗ (that is, such thaty = f (x)). This
shows thatf is both injective and surjective, andf ∗ is its inverse.

Conversely, iff is a bijection, then it has an inverse function, which is its converse
(as a relation).
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1.11 Let X andY be finite sets, withm andn elements respectively. How many
elements are there in each of the following sets?

(a) P X.

(b) X×Y.

(c) The set of relations fromX to Y.

(d) The set∏y∈Y Xy, whereXy = X for all y∈Y.

(a) 2m; (b) mn; (c) 2mn; (d) mn.

1.12 Show that

(a) any finite partially ordered set has a minimal element;

(b) any two (strict) total orders on a finite set are isomorphic;

(c) any (strict) partial order on a finite setX is contained in a (strict) total order on
X.

(a) Choosex0 ∈ X. If it is not minimal, choosex1 < x0, and so on. This descending
chain has no repetitions, so must terminate in a minimal element.

(b) The unique minimal element of a finite totally ordered set is its least element.
Given two finite totally ordered sets of the same size, match their least elements, and
proceed by induction.

(c) LetRbe a non-strict partial order onX, whereX is finite. Suppose thatR is not
total, so that there exist incomparable elementsa,b∈ X. Let

R+ = R∪{(x,y) ∈ X×X : (x,a),(b,y) ∈ R}.

Case analysis shows thatR+ is a partial order containingR. After finitely many steps
of this kind, we reach a total order.

1.13 Let Rbe a reflexive and transitive relation on a setX.

(a) Define a relationSonX by

S= {(x,y) : (x,y),(y,x) ∈ R}.

Show thatS is an equivalence relation onX.

(b) Define a relationT on the setX/Sof S-classes inX by

T = {(S(x),S(y)) : (x,y) ∈ R}.

Show thatT is a non-strict order onX/S.
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(a) For allx∈ X, we have(x,x),(x,x) ∈ R, so(x,x) ∈ S; that is,S is reflexive. It is
clearly symmetric. Suppose that(x,y),(y,z) ∈ S. Then(x,y),(y,x),(y,z),(z,y) ∈R. As
R is transitive, the first and third pairs show that(x,z) ∈R, while the fourth and second
show that(z,x) ∈ R. Hence(x,z) ∈ S, andS is transitive.

(b) First, observe that if(S(x),S(y)) ∈ T, then(x′,y′) ∈ R for all x′ ∈ S(x), y′ ∈
S(y). For se have(x′,x),(x,y),(y,y′) ∈ R; now apply the transitive law twice. So the
definition ofT is independent of the choice of equivalence class representatives.

For all x∈ X, we have(x,x) ∈ R, so(S(x),S(x)) ∈ T. SoT is reflexive. A similar
argument shows that it is transitive. Now suppose that(S(x),S(y)),(S(y),S(x)) ∈ T.
Then(x,y),(y,x) ∈ R, whence(x,y) ∈ SandS(x) = S(y). SoT is antisymmetric.

1.14

(a) Show that the cartesian product of finitely many copies ofN is countable.

(b) LetX be a countable set. Show that the setX∗ of all finite sequences of elements
of X is countable.

(c) Prove that the set ofalgebraic numbers(those which satisfy some polynomial
equation with integer coefficients) is countable. Prove that the set oftranscen-
dental numbers(those real numbers which are not algebraic) is uncountable.

(a) We show thatNn is countable by induction onn. The assertion is clearly true
for n = 1. Suppose thatNn is countable. Then

N
n+1 = Nn×N

is the cartesian product of two countable sets, so is countable.

(b) The set ofn-tuples of elements ofX is countable, by part (a). SoX∗ is the
union of countably many countable sets (namelyXn for each natural numbern), so is
countable.

(c) A polynomial equation of degreen is specified byn+ 1 coefficients. By part
(b), the set of equations is countable. But an equation of degreen has at mostn real
roots. So the set of algebraic numbers is the union of countably many countable sets,
hence countable.

If the set of transcendental numbers were countable, then the set of all real numbers
would be the union of two countable sets, whence countable, which it is not. So the set
of transcendental numbers is uncountable.

This is Cantor’s proof of the existence of transcendental numbers: an uncountable
set cannot be empty!
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1.15

(a) Show that there is a bijection betweenR and the open interval(0,1).

(b) Show that there is a bijection between the interval(0,1) and the interior of the
unit square.

(c) Deduce thatC has the same cardinality asR.

(a) The functionx 7→ arctan(π(x− 1
2)) is a bijection.

(b) Represent numbers in(0,1) by their decimal expansions, with the conven-
tion that terminating decimals are represented by infinite decimals which are zero
(rather than nine) from some point on. Now to the pair(x,y) of real numbers, where
x = 0.x1x2 . . . andy = 0.y1y2 . . ., corresponds the real numberz= 0.x1y2x2y2 . . .. This
function is clearly one-to-one, and its image contains all real numbers except those
whose decimal expansion from some point on reads 090909. . .. There are only count-
ably many of these (they are all rational). So the function can be adjusted to give a
bijection between the interval and the square.

(c) By (a), the setC has the same cardinality as the interior of the unit square, hence
as the open unit interval, hence asR.

1.16 Let (X,<) be a countable totally ordered set. Suppose that

(a)X is dense, that is, ifx< y, then there existsz with x< z< y.

(b) X has no least or greatest element.

Prove thatX is order-isomorphic toQ.

EnumerateX = (x0,x1, . . .) andQ= (q0,q1, . . .).
Now define, inductively, a mapf : X→Q as follows:

(a) f (x0) = q0.

(b) Suppose thatf (x0), . . . , f (xn−1) have been defined. Then then pointsx0, . . . ,xn−1

divide X into n+ 1 intervals (including two semi-infinite intervals);xn lies in
one of these intervals, say(xi ,x j). Now the corresponding interval( f (xi), f (x j))
in Q is non-empty. Choose the rational numberqh with smallest index in this
interval, and definef (xn) = qh.

The function f defined in this way is certainly one-to-one. It is order-preserving:
for the construction ensures that the order relation holding betweenf (xn) and each
f (xi) for i < n is the same as that betweenxn andxi . The difficult part is to show thatf
is onto.

Suppose, for a contradiction, thatf is not onto. Letqm be the rational with smallest
index which is not in the image off . Thenq0, . . . ,qm−1 are all in the image off .
Choosen such that

{q0, . . . ,qm−1} ⊆ { f (x0), . . . , f (xn−1)}.
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Now qm lies in one of then+ 1 intervals into which the line is divided by then points
f (x0), . . . , f (xn−1); sayqm ∈ ( f (xi), f (x j)). The corresponding interval(xi ,x j) in X
is non-empty (by the denseness ofX). Let xr be the point ofX in this interval with
smallest index. When we come to definef (xr), we findxr ∈ (xi ,x j), so we must choose
f (xr) to be the rational with smallest index in( f (xi), f (x j)). But this isqm, since all of
q0, . . . ,qm−1 have already been chosen. Thus,f (xr) = qm, contrary to the assumption
thatqm is not in the image off .

If qm is in one of the semi-infinite intervals at either end, then the argument is sim-
ilar, but using the fact thatX has no least or greatest element instead of the denseness
of X.

Thus f is onto, and so is an order-isomorphism.

1.17 Use the same method to prove that any countable totally ordered set is isomor-
phic to a subset ofQ.

Define the functionf as in the preceding question. As before, it is one-to-one and
order-preserving. This is all that is required; we don’t have to prove that it is onto (and,
of course, it need not be).

1.18 Forn> 0, define a functionf : P n(N)→ N by the rule

f ({x0,x1, . . . ,xn−1}) =
(

x0

1

)
+
(

x1

2

)
+ · · ·+

(
xn−1

n

)
,

wherex0 < x1 < · · ·< xn−1. Prove thatf is a bijection.

First we make the following observation:

f ({x−n+1,x−n+2, . . . ,x}) =
(

x+1
n

)
−1.

For this, we use the standard identity(
y

r−1

)
+
(

y
r

)
=
(

y+1
r

)
for binomial coefficients. Now, if we add one to the left-hand side of the first equation,
the first two terms become(

x−n+2
1

)
+
(

x−n+2
2

)
=
(

x−n+3
2

)
;

this term then adds to the next term
(x−n+3

3

)
to give

(x−n+4
3

)
; the process continues like

a row of dominoes until we have a single term
(x+1

n

)
.

Now we show thatf is a bijection by showing that there is a unique solution
(x0, . . . ,xn−1) of the equationf ({x0, . . . ,xn−1}) = N with x0 < .. . < xn−1. The proof is
by induction onn. Suppose that(

y
n

)
≤ N<

(
y+1

n

)
.
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Then we must choosexn−1 = y, since if xn−1 = x then the maximum possible value
of f ({x0, . . . ,xn−1}) would be

(x+1
n

)
−1, by our earlier calculation. Then we have to

choosex0, . . . ,xn−2 so that

f ({x0, . . . ,xn−2}) = N−
(

y
n

)
.

By the inductive hypothesis, there is a unique solution; and this solution satisfiesxn−2<
y, since

N−
(

y
n

)
<

(
y+1

n

)
−
(

y
n

)
=
(

y
n−1

)
.

The result is proved.
The induction begins since forn = 1 the functionf is simply given byf ({x}) = x.

1.19 Prove that the following two statements are equivalent.

(a) The cartesian product of any family of non-empty sets is non-empty.

(b) Let P be a partition ofX. Then there is a subsetY of X which contains exactly
one element from each member ofP.

Assume (a) (the Axiom of Choice), and letP be a partition ofX. Let F be the
identity function onP. ThenF(p) = p 6= /0 for all p∈ P. Let f be a choice function,
andY = { f (p) : p∈ P}. Then, for everyp∈ P, Y∩ p = { f (p)}.

Conversely, assume (b), and letF be any function onX such thatF(X) 6= /0 for all
x∈ X. Let Z = {(x,y) : y∈ F(x),x∈ X}. Now P = {{x}×F(x) : x∈ X} is a partition
of Z. Choose a setY meeting every set of this partition in just one point. Thus, for each
x∈ X, there is a uniquey∈ F(x) such that(x,y) ∈Y. NowY is itself a choice function
for F .

1.20 Use the Axiom of Choice to show that, if there is a surjection fromY to X, then
there is an injection fromX to Y.

Let g be a surjection fromY to X. Let F be the function fromX to P Y given by

F(x) = {y∈Y : g(y) = x}.

By assumption,F(x) 6= /0 for all x∈ X. Let f be a choice function forF . Then f (x) ∈
F(x)⊆Y for all x∈ X, that is, f is a function fromX toY. Now clearly ifx1 6= x2, then
F(x1) andF(x2) are disjoint, sof (x1) 6= f (x2); so f is an injection.
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