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Summary

Jarik Nešetřil has made deep contributions to all three topics in
the title, and we began thinking about connections between
them when I spent six weeks in Prague in 2004. In this talk I
want to survey the three topics and their connections. I will be
reporting a theorem by my student Debbie Lockett.

I Homogeneous and generic structures
I Construction of the generic poset
I Homomorphisms and homomorphism-homogeneity
I Homomorphism-homogeneous posets
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Universality and homogeneity

A countable relational structure M belonging to a class P is
I universal if every finite or countable structure in P is

embeddable in M (as induced substructure);

I homogeneous if every isomorphism between finite
substructures of M can be extended to an automorphism of
M (an isomorphism M → M).

The age of a relational structure M is the class C of all finite
structures embeddable in M.
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Fräıssé’s Theorem

In about 1950, Fraı̈ssé gave a necessary and sufficient condition
on a class C of finite structures for it to be the age of a countable
homogeneous structure M.

The key part of this condition is the amalgamation property: two
structures in C with isomorphic substructures can be “glued
together” so that the substructures are identified, inside a
larger structure in C.

Moreover, if C satisfies Fraı̈ssé’s conditions, then M is unique
up to isomorphism; we call it the Fraı̈ssé limit of C.
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Ramsey theory

There is a close connection between homogeneity and Ramsey
theory.
Hubička and Nešetřil have shown that, if a countably infinite
structure carries a total order and the class of its finite
substructures is a Ramsey class, then the infinite structure is
homogeneous.

This gives a programme for determining the Ramsey classes:
first find classes satisfying the amalgamation property, and
then decide whether they have the Ramsey property.
The converse is false in general, but Jarik Nešetřil recently
showed that the class of finite metric spaces is a Ramsey class.
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The random graph

The class of all finite graphs is obviously a Fraı̈ssé class. Let R
be its Fraı̈ssé limit. Then

I R is the unique countable universal homogeneous graph;

I R is the countable random graph; that is, if edges of a
countable graph are chosen independently with
probability 1

2 , then the resulting graph is isomorphic to R
with probability 1 (Erdős and Rényi);

I R is the generic countable graph (this is an analogue of the
Erdős–Rényi theorem, with Baire category replacing
measure).
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Constructions of R

There are a number of simple explicit constructions for R, the
first of which was given by Rado.

My favourite is the following: the vertices are the primes
congruent to 1 mod 4; join p to q if p is a quadratic residue
mod q.

Another one (relevant to what will follow) is: Take any
countable model of the Zermelo–Fraenkel axioms for set
theory; join x to y if either x ∈ y or y ∈ x.

We do not need all of ZF for this; in particular, Choice is not
required. The crucial axiom turns out to be Foundation.
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The generic poset

In similar fashion, the class of all finite posets is a Fraı̈ssé class;
let P be its Fraı̈ssé limit. We call P the generic poset.

I P is the unique countable homogeneous universal poset;
I P is the generic countable poset. (It is not clear how to

define the notion of “countable random poset”, but no
sensible definition will give P.)

Schmerl classified all the countable homogeneous posets.
Apart from P, there are only an infinite antichain and some
trivial modifications of the totally ordered set Q.

There is no known direct construction of P similar to the
constructions of R. I now outline a nice recursive construction
by Hubička and Nešetřil.
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by Hubička and Nešetřil.



Set theory with an atom

Take a countable model of set theory with a single atom ♦.
Now let M be any set not containing ♦. Put

ML = {A ∈ M : ♦ /∈ A},
MR = {B \ {♦} : ♦ ∈ B ∈ M}.

Then neither ML nor MR contains ♦.

In the other direction, given two sets P, Q whose elements don’t
contain ♦, let (P | Q) = P∪ {B∪ {♦} : B ∈ Q}. Then (P | Q)
doesn’t contain ♦.
Moreover, for any set M not containing ♦, we have
M = (ML | MR).

Note that any set not containing ♦ can be represented in terms
of sets not involving ♦ by means of the operation (. | .)
For example, {∅, {♦}} is ({∅} | {∅}).
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The generic poset

Let P be the collection of the sets M not containing ♦ defined
by the following recursive properties:
Correctness: ML ∪MR ⊆ P and ML ∩MR = ∅;
Ordering: For all A ∈ ML and B ∈ MR, we have

({A} ∪AR) ∩ ({B} ∪ BL) 6= ∅.

Completeness: AL ⊆ ML for all A ∈ ML, and BR ⊆ MR for all
B ∈ MR.

Now we put M ≤ N if

({M} ∪MR) ∩ ({N} ∪NL) 6= ∅.

Theorem
The above-defined structure is isomorphic to the generic poset P.
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Homomorphisms

A homomorphism f : M → N between relational structures of
the same type is a map which preserves the relations. For
example, if M and N are posets with the strict order relation <,
then a f is a homomorphism if and only if

x < y ⇒ f (x) < f (y).

As usual, a monomorphism is a one-to-one homomorphism,
and an isomorphism is a bijective homomorphism whose
inverse is also a homomorphism.

Thus, homomorphisms of the non-strict order relation in posets
are not the same as homomorphisms of the strict order; but
monomorphisms for the two relations are the same.

For most of this talk I will consider the strict order.
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Notions of homogeneity

We say that a relational structure X has property HH if every
homomorphism between finite substructures of X can be
extended to a homomorphism of X. Similarly, X has property
MH if every monomorphism between finite substructures
extends to a homomorphism. There are six properties of this
kind that can be considered: HH, MH, IH, MM, IM, and II. (It is
not reasonable to extend a map to one satisfying a stronger
condition!) Note that II is equivalent to the standard notion of
homogeneity defined earlier.

These properties are related as follows (strongest at the top):

II MM HH
↘ ↙ ↘ ↙

IM MH
↘ ↙

IH
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Extensions of P

We can recognise P by the property that, if A, B and C are
pairwise disjoint finite subsets with the properties that A < B,
no element of A is above an element of C, and no element of B
is below an element of C, then there exists a point z which is
above A, below B, and incomparable with C.

Extensions of P (posets X with the same point set, in which
x < y in P implies x < y in X) can be recognised by a similar
property: if A and B are finite disjoint sets with A < B, then
there exists a point z satisfying A < z < B.

Using this, it can be shown that any extension of P has the
properties MM and HH (and hence all the earlier properties
except II).
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Properties

If an IH poset P is not an antichain, then it has the following
property:

for any finite set Q, the set {z : z < Q} has no maximal
element and {z : z > Q} has no minimal element.

This is easy to see in the case Q = ∅ (so that P has no least or
greatest element). In general, suppose that Q < z, and z < z′.
Extend the isomorphism fixing Q and mapping z′ to z; if z′′ is
the image of z, then Q < z′′ < z.

Taking Q to be a singleton, we see that P is dense.
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X-free posets

We say that a countable poset is X-free if it satisfies the
following:

If A and B are 2-element antichains with A < B, then there
does not exist a point z with A < z < B.

Such a point z together with A and B would form the poset X.

Take a discrete tree T; for each pair (x, y) in T such that y covers
x, add a copy of the open rational interval (0, 1) between x and
y; and delete the points of T. This poset is vacuously X-free,
and also has the property that for any finite Q, {z : z < Q} has
no maximal element and {z : z > Q} has no minimal element.

Any poset with these two properties can be shown to be HH
and MM. This gives 2ℵ0 non-isomorphic HH and MM posets.
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Lockett’s Theorem

Theorem

I For a countable poset which is not an antichain, the properties
IM, IH, MM, MH, HH are all equivalent.

I A countable poset P has one of these properties if and only if one
of the following holds:

I P is an antichain;
I P is the union of incomparable copies of Q;
I P is an extension of the generic poset P;
I P is X-free and, for any finite set Q, {z : z < Q} has no maximal

element and {z : z > Q} has no minimal element.

Thus, for posets, the earlier diagram simplifies:

II
↓

IM = IH = MM = MH = HH
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Non-strict orders

Mono- and isomorphisms of non-strict orders are the same as
for strict orders. So the classes MM and IM still coincide.
However, the others are larger: a finite chain is HH, for
example.

Lockett has shown that the diagram for non-strict partial order
is

II
↓

IM = MM
↓

IH = MH = HH
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Graphs

For graphs, it is not true that the five classes coincide. Jarik and
I showed that a countable MH graph either is an extension of
the random graph R (containing it as a spanning subgraph), or
has bounded claw size. Apart from disjoint unions of complete
graphs (containing no K1,2), no examples with bounded claw
size are known. Extensions of R are MM and HH.

The homogeneous (II) graphs were all found by Lachlan and
Woodrow. They are disjoint unions of complete graphs and
their complements; the Fraı̈ssé limit of the class of Kn-free
graphs (n ≥ 3) and its complement; and the random graph. We
don’t know what happens for IH or IM.
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