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Summary

This will be a quick tour round a class of interesting groups
which arise as the automorphism groups of countable
homogeneous subgroups.
The most famous of these are the automorphism group of the
countable “random graph”, and the isometry group of the
Urysohn metric space.
There is a lot that we don’t know about these groups!



B-groups

A group X is a B-group if every primitive permutation group G
containing X as a regular subgroup is doubly transitive.
(Here G is primitive if there is no non-trivial G-invariant
equivalence relation, and doubly transitive if there are no
non-trivial G-invariant binary relations at all. So X is a B-group
if, whenever we add permutations destroying all the
X-invariant equivalence relations, the resulting group is doubly
transitive.)

The name (due to Wielandt) comes from
Theorem: A finite cyclic group of composite order is a B-group.
(Burnside)
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Finite B-groups

The study of B-groups by Schur and others led to the
development of the theory of Schur rings, and connections
between permutation groups and representation theory. This is
outlined in Wielandt’s book.

Using the Classification of Finite Simple Groups, it can be
shown that, for almost all n (all except a set of zero density),
every group of order n is a B-group.
This is not the same as saying that almost all finite groups are
B-groups. It seems that most finite groups have prime power
order; and there are many non-B-groups of prime power order,
for example elementary abelian groups of order pn where p is
odd or pn − 1 is composite.

Problem: Are there any infinite B-groups?
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Infinite B-groups

G. Higman: Let X be a countable group in which every
non-identity element has only finitely many square roots. Then
X is not a B-group.

Cameron and Johnson: There is a primitive, not doubly
transitive group G of countable degree such that every group
satisfying Higman’s condition (or indeed, a more general
condition, given on the next slide) is a regular subgroup of G.
The group G is the automorphism group of the countable
random graph, see later.
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The condition

A square-root set in the group X is a set of the form
√

a = {x ∈ X : x2 = a}.

It is non-principal if a 6= 1.
The sufficient condition for X to be a regular subgroup of the
group G of the last slide is as follows:

X cannot be written as the union of a finite number of
translates of non-principal square-root sets together with a
finite set.

The proof shows that, if X satisfies this condition, then a
random Cayley graph for X is almost surely isomorphic to the
random graph R.
In particular, R admits cyclic automorphisms (since the infinite
cyclic group satisfies the condition).
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A consequence

Corollary: There is no countable abelian B-group.

For let X be a countable abelian group, and
X2 = {x ∈ X : x2 = 1}. Then any translate of a square-root set
is a coset of X2. So if X2 has infinite index in X, then X satisfies
the more general form of Higman’s condition.
But if X2 has finite index in X, then X has finite exponent, and
so can be written as X = Y× Z where Y and Z are infinite; then
X is a regular subgroup of the primitive group S∞ o S2 (in the
product action).

An example of a group for which it is not known whether it is a
B-group is

〈x, y : y4 = 1, y−1xy = x−1〉.
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The random graph

Take a countable set X of vertices. Choose a random graph on
X as follows: decide independently for each pair of vertices,
whether they are joined by an edge or not (probability 1

2 for
each outcome).

Theorem: There is a graph R with the property that, almost
surely, the above random graph is isomorphic to R.

Moreover, the graph R is universal (it contains every finite or
countable graph as an induced subgraph) and homogeneous
(every isomorphism between finite subgraphs of R can be
extended to an automorphism of R).
Clearly R is unique up to isomorphism.
The group G of the earlier slide is the automorphism group
of R.
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Properties of Aut(R)

I Aut(R) contains a copy of every countable group. (Indeed,
if X is countable, then X× C∞ satisfies the weaker form of
Higman’s condition.)

I Aut(R) is simple: indeed, for any g, h ∈ Aut(R) with g 6= 1,
h is a product of three conjugates of g±1. (Truss)

I Every subgroup of index less than 2ℵ0 in Aut(R) contains
the pointwise stabiliser of a finite set (and is contained in
the setwise stabiliser). This is the so-called small index
property of R (Hodges et al.)
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Topology

There is a natural topology on the symmetric group of
countable degree, the topology of pointwise convergence. If the
domain is N, then gn → g if mgn = mg for all n ≥ n0(m).
Alternatively, a basis of open neighbourhoods of the identity
consists of the stabilisers of all finite tuples of points.
The topology arises from a complete metric on Sym(N).

A subgroup G of Sn is closed in this topology if and only if G is
the automorphism group of some relational structure on its
domain Ω (graph, partial order, etc.)

If G is closed and H ≤ G, then H is dense in G if and only if
G and H have the same orbits on Ωn for all n.
For example, H is dense in the symmetric group if and only if it
is highly transitive on Ω.



Topology

There is a natural topology on the symmetric group of
countable degree, the topology of pointwise convergence. If the
domain is N, then gn → g if mgn = mg for all n ≥ n0(m).
Alternatively, a basis of open neighbourhoods of the identity
consists of the stabilisers of all finite tuples of points.
The topology arises from a complete metric on Sym(N).

A subgroup G of Sn is closed in this topology if and only if G is
the automorphism group of some relational structure on its
domain Ω (graph, partial order, etc.)

If G is closed and H ≤ G, then H is dense in G if and only if
G and H have the same orbits on Ωn for all n.
For example, H is dense in the symmetric group if and only if it
is highly transitive on Ω.



Topology

There is a natural topology on the symmetric group of
countable degree, the topology of pointwise convergence. If the
domain is N, then gn → g if mgn = mg for all n ≥ n0(m).
Alternatively, a basis of open neighbourhoods of the identity
consists of the stabilisers of all finite tuples of points.
The topology arises from a complete metric on Sym(N).

A subgroup G of Sn is closed in this topology if and only if G is
the automorphism group of some relational structure on its
domain Ω (graph, partial order, etc.)

If G is closed and H ≤ G, then H is dense in G if and only if
G and H have the same orbits on Ωn for all n.
For example, H is dense in the symmetric group if and only if it
is highly transitive on Ω.



Topology, continued

The small index property for Aut(M) is precisely the statement

Every subgroup of Aut(M) of index less than 2ℵ0 is open.

So if M has the small index property, the topology of Aut(M)
can be recovered from its abstract group structure. Of course,
this applies to the random graph R.

In a complete metric space, a subset is residual if it contains a
countable intersection of open dense sets. Residual sets are
non-empty (the Baire category theorem), and are regarded as
“large”.
In common with some other groups like the symmetric group,
Aut(R) contains generic elements (having the property that
their conjugacy class is residual in the whole group).
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Some subgroups of Aut(R)

Here are two remarkable results due to Bhattacharjee and
Macpherson.

Theorem: There exist automorphisms f , g of R such that
(a) f has a single cycle on R, which is infinite,
(b) g fixes a vertex v and has two cycles on the remaining

vertices (namely, the neighbours and non-neighbours of v),
(c) the group 〈f , g〉 is free and is transitive on vertices, edges,

and non-edges of R, and each of its non-identity elements
has only finitely many cycles on R.

Theorem: There is a locally finite group G of automorphisms of
R which is dense in Aut(R) (that is, any isomorphism between
finite subgraphs can be extended to an element of G).
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Homogeneous structures

A relational structure M on Ω is homogeneous if every
isomorphism between finite substructures of M can be
extended to an automorphism of M.

It is usually simple to decide whether Aut(M) is primitive or
doubly transitive. For example, if M is a graph, then Aut(M) is
primitive if and only if it is not a disjoint union of complete
graphs or the complement of one; and it is never doubly
transitive unless M is complete or null.
So automorphism groups of homogeneous structures are good
places to look for non-B-groups.
It is also interesting to investigate them in their own right, and
ask about simplicity, small index property, dense subgroups,
etc.
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Fräıssé’s Theorem

The age of a relational structure is the class of isomorphism
types of its finite substructures. Fraı̈ssé showed how to
recognise the existence of homogeneous structures from their
ages.

A class C is the age of a countable homogeneous structure M if
and only if C is closed under isomorphism, closed under taking
substructures, contains only countably many structures up to
isomorphism, and satisfies the amalgamation property. If these
conditions hold, then M is unique, and is called the Fraı̈ssé
limit of C.
For example, the graph R is the Fraı̈ssé limit of the class of all
finite graphs (which clearly satisfies the conditions).
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Total orders

It is easy to see that Q is the unique countable homogeneous
total order. (This is a consequence of Cantor’s Theorem that it
is the unique countable dense total order without endpoints. In
fact this example was Fraı̈ssé’s motivation.)

The normal subgroup structure of Aut(Q) is known:
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Regular subgroups of Aut(Q)

A group X acts regularly on a total order if and only if there is a
right order on X (a total order invariant under right
multiplication). Usually the order will be dense. It seems that
“most” right-orderable groups act regularly on Q, and hence
are not B-groups.

Problem: Which groups have a right order but not a dense
right order?

Right-orderable groups are torsion-free. A free or free abelian
group of rank greater than 1 has a dense right-order.



Graphs

Lachlan and Woodrow determined the countable
homogeneous graphs. They are the following:

I the disjoint union of complete graphs of the same size, or
its complement;

I the Fraı̈ssé limit of the class of graphs containing no
complete graph of size m (for fixed m ≥ 3), or its
complement;

I the random graph R.

The first type are not very interesting.
The Fraı̈ssé limit of the class of Kn-free graphs (that is, the
unique countable universal homogeneous Kn-free graph) is
called the Henson graph Hn.
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I the Fraı̈ssé limit of the class of graphs containing no
complete graph of size m (for fixed m ≥ 3), or its
complement;

I the random graph R.

The first type are not very interesting.
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Automorphism groups of Henson’s graphs

Here are a few things we don’t know about Aut(Hn) (for
n ≥ 3).

I Is Aut(Hn) simple?

I Does Aut(Hn) have the small index property?
I Is it true that Aut(Hn) and Aut(Hm) are not isomorphic for

m 6= n?
It is known that Aut(Hn) is not isomorphic to Aut(R)
(using the small index property for Aut(R)).
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Henson’s graphs as Cayley graphs

A sufficient condition for a countable group to act regularly on
H3 (i.e. to have H3 as a Cayley graph) is known, Unfortunately
it is stronger than the condition for R, so gives us no new
non-B-groups.
For n ≥ 4, we do not have any examples of groups having Hn
as a Cayley graph.

Proposition: For n ≥ 4, Hn is not a normal Cayley graph of any
group; that is, it is not invariant under both left and right
multiplication. In particular, Hn is not a Cayley graph for any
abelian group, if n ≥ 4.
These facts extend a result of Henson, who showed that H3
admits a cyclic automorphism but Hn does not for n ≥ 4.
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Other structures

In the following cases, the countable homogeneous structures
have been determined, but we know very little about their
automorphism groups.

I Tournaments (Lachlan): there are just three homogeneous
tournaments.
(A tournament is a directed graph in which every pair of
vertices is joined by one directed edge.)

I Directed graphs (Cherlin): there are uncountably many.
I Partially ordered sets (Schmerl): there is just one

interesting one, the generic poset.
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Metric spaces

Recall Fraı̈ssé’s conditions on C: it should be closed under
isomorphism, closed under taking substructures, have only
countably many members up to isomorphism, and have the
amalgamation property.

Metric spaces can be described as relational structures, with
one binary relation for each possible distance. However, they
fail the third of Fraı̈ssé’s conditions: there are too many 2-point
spaces!

However, the class of rational metric spaces (with all distances
in Q) is a Fraı̈ssé class. If we take its Fraı̈ssé limit, and then take
the completion of this, we obtain the Urysohn space U.
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The Urysohn space

In a posthumous paper published in 1927, Urysohn showed
that there is a Polish space (a complete separable metric space)
which is universal (it embeds every Polish space isometrically)
and homogeneous (any isometry between finite subsets
extends to an isometry of the whole space). Moreover, it is
unique up to isometry. This is the Urysohn space U.
In fact U is homeomorphic (though not isometric!) to
infinite-dimensional Hilbert space (Uspensky).

Now we can ask many of the same questions about Aut(U)
that we considered for countable homogeneous structures.
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that we considered for countable homogeneous structures.



Isometries of Aut(U)

I Is it simple as topological group?
The bounded isometries form a proper normal subgroup.
Are the group of bounded isometries and its quotient
simple as abstract groups?

I What groups can act with regular dense orbits?
All that is known is that Z and the countable elementary
abelian 2-group do (so that U has many abelian group
structures), and that the countable elementary abelian
3-group does not.
Problem: What can be said about the closure of a cyclic
group of isometries with dense orbits?

I Other interesting subgroups?
There is a dense free subgroup, and a dense locally finite
subgroup.
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