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Block designs

A block design consists of a set of v points and a set of blocks,
each block a k-set of points.

I will assume that it is a 1-design, that is, each point lies in r
blocks. (More general versions of what follows hold without
this assumption.) Then the number of blocks is b = vr/k.

The incidence matrix N of the block design is the v× b matrix
with (p, b) entry 1 if p ∈ B, 0 otherwise. The matrix Λ = NN> is
the concurrence matrix, with (p, q) entry equal to the number of
blocks containing p and q. It is symmetric, with row and
column sums rk, and diagonal entries r.
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Optimality

The information matrix of the block design is L = rI−Λ/k. It
has a “trivial” eigenvalue 0, corresponding to the all-1
eigenvector.

The design is called
I A-optimal if it maximizes the harmonic mean of the

non-trivial eigenvalues;
I D-optimal if it maximizes the geometric mean of the

non-trivial eigenvalues;
I E-optimal if it maximizes the smallest non-trivial

eigenvalue
over all block designs with the given v, k, r.

A 2-design is optimal in all three senses. But what if no
2-design exists for the given v, k, r?
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The question

For a 2-design, the concurrence matrix is Λ = (r− λ)I + λJ,
where J is the all-1 matrix. Ching-Shui Cheng suggested
looking for designs where Λ is a small perturbation of this, say
Λ = (r− t)I + tJ−A, where A is a matrix with small entries
(say 0, +1, −1). For E-optimality, we want A to have smallest
eigenvalue as large as possible (say greater than −2).

So we want a square matrix A such that
I A has entries 0, +1, −1;
I A is symmetric with zero diagonal;
I A has constant row sums c;
I A has smallest eigenvalue greater than −2.

Call such a matrix admissible.
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Root systems

If A is admissible, then 2I + A is positive definite, so is a matrix
of inner products of a set of vectors in Rn.

These vectors form a subsystem of a root system of type An, Dn,
E6, E7 or E8 (as in the classification of simple Lie algebras by
Cartan and Killing). Indeed, they form a basis for the root
system.

(This idea was originally used by Cameron, Goethals, Seidel
and Shult in 1979 for graphs with least eigenvalue ≥ −2.)

So we try to determine the admissible matrices by looking for
subsets of the root systems.
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The case An
The vectors of An are of the form ei − ej for 1 ≤ i, j ≤ n + 1, i 6= j,
where e1, . . . , en+1 form a basis for Rn+1.

So an admissible matrix of this type is represented by a tree
with oriented edges. (We have an edge j → i if ei − ej is in our
subset.)

An oriented tree gives an admissible matrix if and only if
s(w)− s(v) = c + 2 for any edge v → w, where s(v) is the signed
degree (number of edges in minus number out) and c is the
constant row sum.

Here is an example (edges directed upwards).
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The case Dn

The vectors of Dn are those of the form ±ei ± ej for 1 ≤ i < j ≤ n,
where e1, . . . , en form an orthonormal basis for Rn.

This case is a bit more complicated. An admissible matrix is
represented by a unicyclic graph, whose edges are either
directed (if of form ei − ej) or undirected and signed (if of the
form ±(ei + ej)). A similar condition for constant row sum can
be formulated.

Here is an example:
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The case En

There are three exceptional root systems not of the above form,
in 6, 7 and 8 dimensions, called E6, E7 and E8.

By a computer search, the numbers of admissible matrices
which occur in these root systems are 2, 3, 12 respectively.

Here is an example in E8:

0 − + + − − + −
− 0 − − + + − +
+ − 0 + − − 0 0
+ − + 0 − − 0 0
− + − − 0 + 0 0
− + − − + 0 0 0
+ − 0 0 0 0 0 −
− + 0 0 0 0 − 0


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Conclusion

Having determined the matrices, we can use Leonard Soicher’s
DESIGN software to look for block designs. Many examples
exist.

An example in E6 has point set {1, 2, 3, 4, 5, 6} and blocks

{123, 125, 125, 134, 136, 136, 146, 156, 234, 245,
246, 246, 256, 345, 345, 356}.

The next step would be to go on and decide whether any
E-optimal block designs are obtained in this way. This has not
yet been done!
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