Oligomorphic permutation groups: growth rates and algebras

Peter J. Cameron

p.j.cameron@qmul.ac.uk

Gregynog Mathematics Colloquium 22 May 2007

The definition

Let G be a permutation group on an infinite set Ω . Then G has a natural induced action on the set of all n-tuples of elements of Ω , or on the set of n-tuples of distinct elements of Ω , or on the set of n-element subsets of Ω . It is easy to see that if there are only finitely many orbits on one of these sets, then the same is true for the others.

The definition

Let G be a permutation group on an infinite set Ω . Then G has a natural induced action on the set of all n-tuples of elements of Ω , or on the set of n-tuples of distinct elements of Ω , or on the set of n-element subsets of Ω . It is easy to see that if there are only finitely many orbits on one of these sets, then the same is true for the others.

We say that *G* is oligomorphic if it has only finitely many orbits on Ω^n for all natural numbers *n*.

The definition

Let G be a permutation group on an infinite set Ω . Then G has a natural induced action on the set of all n-tuples of elements of Ω , or on the set of n-tuples of distinct elements of Ω , or on the set of n-element subsets of Ω . It is easy to see that if there are only finitely many orbits on one of these sets, then the same is true for the others.

We say that *G* is oligomorphic if it has only finitely many orbits on Ω^n for all natural numbers *n*.

We denote the number of orbits on all n-tuples, resp. n-tuples of distinct elements, n-sets, by $F_n^*(G)$, $F_n(G)$, $f_n(G)$ respectively.

Let *S* be the symmetric group on an infinite set *X*. Then *S* is oligomorphic and

Let *S* be the symmetric group on an infinite set *X*. Then *S* is oligomorphic and

- ► $F_n(S) = f_n(S) = 1$,
- ► $F_n^*(S) = B(n)$, the nth Bell number (the number of partitions of a set of size n.

Let *S* be the symmetric group on an infinite set *X*. Then *S* is oligomorphic and

- ► $F_n(S) = f_n(S) = 1$,
- ► $F_n^*(S) = B(n)$, the nth Bell number (the number of partitions of a set of size n.

Let $A = Aut(\mathbb{Q}, <)$, the group of order-preserving permutations of \mathbb{Q} . Then A is oligomorphic and

Let *S* be the symmetric group on an infinite set *X*. Then *S* is oligomorphic and

- ► $F_n(S) = f_n(S) = 1$,
- ► $F_n^*(S) = B(n)$, the nth Bell number (the number of partitions of a set of size n.

Let $A = Aut(\mathbb{Q}, <)$, the group of order-preserving permutations of \mathbb{Q} . Then A is oligomorphic and

- ▶ $f_n(A) = 1$;
- ▶ $F_n(A) = n!;$
- ▶ $F_n^*(A)$ is the number of preorders of an *n*-set.

Consider the group S^r acting on the disjoint union of r copies of X.

Consider the group S^r acting on the disjoint union of r copies of X.

- $ightharpoonup F_n(S^r) = r^n;$

Consider the group S^r acting on the disjoint union of r copies of X.

- $F_n(S^r) = r^n;$
- $ightharpoonup f_n(S^r) = \binom{n+r-1}{r-1}.$

Consider S^r acting on Ω^r . Then $F_n^*(S^r) = B(n)^r$.

Consider the group S^r acting on the disjoint union of r copies of X.

- $ightharpoonup F_n(S^r) = r^n;$
- $ightharpoonup f_n(S^r) = \binom{n+r-1}{r-1}.$

Consider S^r acting on Ω^r . Then $F_n^*(S^r) = B(n)^r$. From this we can find $F_n(S^r)$ by inversion:

$$F_n(G) = \sum_{k=1}^n s(n,k) F_k^*(G)$$

for any oligomorphic group G, where s(n,k) is the signed Stirling number of the second kind.

Consider the group S^r acting on the disjoint union of r copies of X.

- $ightharpoonup F_n(S^r) = r^n;$
- $ightharpoonup f_n(S^r) = \binom{n+r-1}{r-1}.$

Consider S^r acting on Ω^r . Then $F_n^*(S^r) = B(n)^r$. From this we can find $F_n(S^r)$ by inversion:

$$F_n(G) = \sum_{k=1}^n s(n,k) F_k^*(G)$$

for any oligomorphic group G, where s(n,k) is the signed Stirling number of the second kind.

For A^2 acting on \mathbb{Q}^2 , $f_n(A^2)$ is the number of zero-one matrices (of unspecified size) with n ones and no rows or columns of zeros.

Let G = S Wr S, the wreath product of two copies of S. Then $F_n(G) = B(n)$ and $f_n(G) = p(n)$, the number of partitions of n.

Let G = S Wr S, the wreath product of two copies of S. Then $F_n(G) = B(n)$ and $f_n(G) = p(n)$, the number of partitions of n.

Let $G = S_2$ Wr A, where S_2 is the symmetric group of degree 2. Then $f_n(G)$ is the nth Fibonacci number.

There is a unique countable random graph R: that is, if we choose a countable graph at random (edges independent with probability $\frac{1}{2}$, then with probability 1 it is isomorphic to R.

There is a unique countable random graph R: that is, if we choose a countable graph at random (edges independent with probability $\frac{1}{2}$, then with probability 1 it is isomorphic to R.

► *R* is universal, that is, it contains every finite or countable graph as an induced subgraph;

There is a unique countable random graph R: that is, if we choose a countable graph at random (edges independent with probability $\frac{1}{2}$, then with probability 1 it is isomorphic to R.

- ▶ *R* is universal, that is, it contains every finite or countable graph as an induced subgraph;
- ▶ *R* is homogeneous, that is, any isomorphism between finite induced subgraphs of *R* can be extended to an automorphism of *R*.

There is a unique countable random graph R: that is, if we choose a countable graph at random (edges independent with probability $\frac{1}{2}$, then with probability 1 it is isomorphic to R.

- ▶ *R* is universal, that is, it contains every finite or countable graph as an induced subgraph;
- ▶ *R* is homogeneous, that is, any isomorphism between finite induced subgraphs of *R* can be extended to an automorphism of *R*.

If $G = \operatorname{Aut}(R)$, then $F_n(G)$ and $f_n(G)$ are the numbers of labelled and unlabelled graphs on n vertices.

If a set of sentences in a first-order language has an infinite model, then it has arbitrarily large infinite models. In other words, we cannot specify the cardinality of an infinite structure by first-order axioms.

If a set of sentences in a first-order language has an infinite model, then it has arbitrarily large infinite models. In other words, we cannot specify the cardinality of an infinite structure by first-order axioms.

Cantor proved that a countable dense total order without endpoints is isomorphic to Q. Apart from countability, the conditions in this theorem are all first-order sentences.

If a set of sentences in a first-order language has an infinite model, then it has arbitrarily large infinite models. In other words, we cannot specify the cardinality of an infinite structure by first-order axioms.

Cantor proved that a countable dense total order without endpoints is isomorphic to Q. Apart from countability, the conditions in this theorem are all first-order sentences.

What other structures can be specified by countability and first-order axioms? Such structures are called countably categorical.

In 1959, the following result was proved independently by Engeler, Ryll-Nardzewski and Svenonius:

In 1959, the following result was proved independently by Engeler, Ryll-Nardzewski and Svenonius:

Theorem

A countable structure M over a first-order language is countably categorical if and only if Aut(M) is oligomorphic.

In 1959, the following result was proved independently by Engeler, Ryll-Nardzewski and Svenonius:

Theorem

A countable structure M over a first-order language is countably categorical if and only if Aut(M) is oligomorphic.

In fact, more is true: the types over the theory of M are all realised in M, and the sets of n-tuples which realise the n-types are precisely the orbits of $\operatorname{Aut}(M)$ on M^n .

Several things are known about the behaviour of the sequence $(f_n(G))$:

it is non-decreasing;

- it is non-decreasing;
- ▶ either it grows like a polynomial (that is, $an^k \le f_n(G) \le bn^k$ for some a, b > 0 and $k \in \mathbb{N}$), or it grows faster than any polynomial;

- it is non-decreasing;
- ▶ either it grows like a polynomial (that is, $an^k \le f_n(G) \le bn^k$ for some a, b > 0 and $k \in \mathbb{N}$), or it grows faster than any polynomial;
- if G is primitive (that is, it preserves no non-trivial equivalence relation on Ω), then either $f_n(G) = 1$ for all n, or $f_n(G)$ grows at least exponentially;

- it is non-decreasing;
- ▶ either it grows like a polynomial (that is, $an^k \le f_n(G) \le bn^k$ for some a, b > 0 and $k \in \mathbb{N}$), or it grows faster than any polynomial;
- if G is primitive (that is, it preserves no non-trivial equivalence relation on Ω), then either $f_n(G) = 1$ for all n, or $f_n(G)$ grows at least exponentially;
- ▶ if *G* is highly homogeneous (that is, if $f_n(G) = 1$ for all n), then either there is a linear or circular order on Ω preserved or reversed by *G*, or *G* is highly transitive (that is, $F_n(G) = 1$ for all n).

- it is non-decreasing;
- ▶ either it grows like a polynomial (that is, $an^k \le f_n(G) \le bn^k$ for some a, b > 0 and $k \in \mathbb{N}$), or it grows faster than any polynomial;
- ▶ if *G* is primitive (that is, it preserves no non-trivial equivalence relation on Ω), then either $f_n(G) = 1$ for all n, or $f_n(G)$ grows at least exponentially;
- ▶ if *G* is highly homogeneous (that is, if $f_n(G) = 1$ for all n), then either there is a linear or circular order on Ω preserved or reversed by *G*, or *G* is highly transitive (that is, $F_n(G) = 1$ for all n).
- ▶ There is no upper bound on the growth rate of $(f_n(G))$.

Examples suggest that much more is true. For any reasonable growth rate, appropriate limits should exist:

▶ for polynomial growth of degree k, $\lim(f_n(G)/n^k)$ should exist;

- for polynomial growth of degree k, $\lim (f_n(G)/n^k)$ should exist;
- ▶ for fractional exponential growth (like $\exp(n^c)$), $\lim(\log\log f_n(G)/\log n)$ should exist;

- ▶ for polynomial growth of degree k, $\lim(f_n(G)/n^k)$ should exist;
- ▶ for fractional exponential growth (like $\exp(n^c)$), $\lim(\log\log f_n(G)/\log n)$ should exist;
- for exponential growth, $\lim(\log f_n(G)/n)$ should exist;

- for polynomial growth of degree k, $\lim (f_n(G)/n^k)$ should exist;
- ▶ for fractional exponential growth (like $\exp(n^c)$), $\lim(\log\log f_n(G)/\log n)$ should exist;
- ▶ for exponential growth, $\lim(\log f_n(G)/n)$ should exist; and so on.

Growth of $(f_n(G))$, 2

Examples suggest that much more is true. For any reasonable growth rate, appropriate limits should exist:

- for polynomial growth of degree k, $\lim (f_n(G)/n^k)$ should exist;
- ▶ for fractional exponential growth (like $\exp(n^c)$), $\lim(\log\log f_n(G)/\log n)$ should exist;
- ▶ for exponential growth, $\lim(\log f_n(G)/n)$ should exist; and so on.

I do not know how to prove any of these things; and I do not know how to formulate a general conjecture.

A Ramsey-type theorem

Theorem

Let X be an infinite set, and suppose that the n-element subsets of Ω are coloured with r different colours (all of which are used). Then there is an ordering (c_1, \ldots, c_r) of the colours, and infinite subsets Y_1, \ldots, Y_r of X, such that, for $i = 1, \ldots, r$, the set Y_i contains an n-set of colour c_i but none of colour c_j for j > i.

A Ramsey-type theorem

Theorem

Let X be an infinite set, and suppose that the n-element subsets of Ω are coloured with r different colours (all of which are used). Then there is an ordering (c_1, \ldots, c_r) of the colours, and infinite subsets Y_1, \ldots, Y_r of X, such that, for $i = 1, \ldots, r$, the set Y_i contains an n-set of colour c_i but none of colour c_j for j > i.

The existence of Y_1 is the classical theorem of Ramsey.

A Ramsey-type theorem

Theorem

Let X be an infinite set, and suppose that the n-element subsets of Ω are coloured with r different colours (all of which are used). Then there is an ordering (c_1, \ldots, c_r) of the colours, and infinite subsets Y_1, \ldots, Y_r of X, such that, for $i = 1, \ldots, r$, the set Y_i contains an n-set of colour c_i but none of colour c_j for j > i.

The existence of Y_1 is the classical theorem of Ramsey.

There is a finite version of the theorem, and so there are corresponding 'Ramsey numbers'. But very little is known about them!

Monotonicity

Corollary

The sequence $(f_n(G))$ *is non-decreasing.*

Monotonicity

Corollary

The sequence $(f_n(G))$ is non-decreasing.

Proof.

Let $r = f_n(G)$, and colour the n-subsets with r colours according to the orbits. Then by the Theorem, there exists an (n + 1)-set containing a set of colour c_i but none of colour c_j for j > i. These (n + 1)-sets all lie in different orbits; so $f_{n+1}(G) \ge r$.

Monotonicity

Corollary

The sequence $(f_n(G))$ *is non-decreasing.*

Proof.

Let $r = f_n(G)$, and colour the n-subsets with r colours according to the orbits. Then by the Theorem, there exists an (n + 1)-set containing a set of colour c_i but none of colour c_j for j > i. These (n + 1)-sets all lie in different orbits; so $f_{n+1}(G) \ge r$.

There is also an algebraic proof of this corollary. We'll discuss this later.

Let $\binom{\Omega}{n}$ denote the set of n-subsets of Ω , and V_n the vector space of functions from $\binom{\Omega}{n}$ to \mathbb{C} .

Let $\binom{\Omega}{n}$ denote the set of n-subsets of Ω , and V_n the vector space of functions from $\binom{\Omega}{n}$ to \mathbb{C} .

We make $A = \bigoplus_{n \geq 0} V_n$ into an algebra by defining, for $f \in V_n$, $g \in V_m$, the product $fg \in V_{n+m}$ by

$$(fg)(K) = \sum_{M \in \binom{K}{m}} f(M)g(K \setminus M)$$

for $K \in \binom{\Omega}{m+n}$, and extending linearly.

Let $\binom{\Omega}{n}$ denote the set of n-subsets of Ω , and V_n the vector space of functions from $\binom{\Omega}{n}$ to \mathbb{C} .

We make $A = \bigoplus_{n \geq 0} V_n$ into an algebra by defining, for $f \in V_n$, $g \in V_m$, the product $fg \in V_{n+m}$ by

$$(fg)(K) = \sum_{M \in \binom{K}{m}} f(M)g(K \setminus M)$$

for $K \in \binom{\Omega}{m+n}$, and extending linearly.

 \mathcal{A} is a commutative and associative graded algebra over \mathbb{C} , sometimes referred to as the reduced incidence algebra of finite subsets of Ω .

Now let G be a permutation group on Ω , and let V_n^G denote the set of fixed points of G in V_n . Put

$$\mathcal{A}[G] = \bigoplus_{n \geq 0} V_n^G,$$

a graded subalgebra of \mathcal{A} .

Now let G be a permutation group on Ω , and let V_n^G denote the set of fixed points of G in V_n . Put

$$\mathcal{A}[G] = \bigoplus_{n \geq 0} V_n^G,$$

a graded subalgebra of A.

If G is oligomorphic, then the dimension of V_n^G is $f_n(G)$, and so the Hilbert series of the algebra $\mathcal{A}[G]$ is the ordinary generating function of the sequence $(f_n(G))$.

Now let G be a permutation group on Ω , and let V_n^G denote the set of fixed points of G in V_n . Put

$$\mathcal{A}[G] = \bigoplus_{n \geq 0} V_n^G,$$

a graded subalgebra of A.

If G is oligomorphic, then the dimension of V_n^G is $f_n(G)$, and so the Hilbert series of the algebra $\mathcal{A}[G]$ is the ordinary generating function of the sequence $(f_n(G))$.

What properties does this algebra have?

Now let G be a permutation group on Ω , and let V_n^G denote the set of fixed points of G in V_n . Put

$$\mathcal{A}[G] = \bigoplus_{n \geq 0} V_n^G,$$

a graded subalgebra of A.

If G is oligomorphic, then the dimension of V_n^G is $f_n(G)$, and so the Hilbert series of the algebra $\mathcal{A}[G]$ is the ordinary generating function of the sequence $(f_n(G))$.

What properties does this algebra have?

Note that it is not usually finitely generated since the growth of $(f_n(G))$ is polynomial only in special cases.

A non-zero-divisor

Let e be the constant function in V_1 with value 1. Of course, e lies in A[G] for any permutation group G.

A non-zero-divisor

Let e be the constant function in V_1 with value 1. Of course, e lies in A[G] for any permutation group G.

Theorem

The element e is not a zero-divisor in A.

A non-zero-divisor

Let e be the constant function in V_1 with value 1. Of course, e lies in A[G] for any permutation group G.

Theorem

The element e is not a zero-divisor in A.

This theorem gives another proof of the monotonicity of $(f_n(G))$. For multiplication by e is a monomorphism from V_n^G to V_{n+1}^G , and so $f_{n+1}(G) = \dim v_{n+1}^G \ge \dim V_n^G = f_n(G)$.

An integral domain

If *G* has a finite orbit Δ , then any function whose support is contained in Δ is nilpotent.

An integral domain

If *G* has a finite orbit Δ , then any function whose support is contained in Δ is nilpotent.

The converse, a long-standing conjecture, has recently been proved by Maurice Pouzet:

Theorem

If G has no finite orbits on Ω , then A[G] is an integral domain.

Consequences

Pouzet's Theorem has a consequence for the growth rate:

Theorem

If G is oligomorphic, then

$$f_{m+n}(G) \ge f_m(G) + f_n(G) - 1.$$

Consequences

Pouzet's Theorem has a consequence for the growth rate:

Theorem

If G is oligomorphic, then

$$f_{m+n}(G) \ge f_m(G) + f_n(G) - 1.$$

Proof.

Multiplication maps $V_m^G \otimes V_n^G$ into V_{m+n}^G ; by Pouzet's result, it is injective on the projective Segre variety, and a little dimension theory gets the result.

Consequences

Pouzet's Theorem has a consequence for the growth rate:

Theorem

If G is oligomorphic, then

$$f_{m+n}(G) \ge f_m(G) + f_n(G) - 1.$$

Proof.

Multiplication maps $V_m^G \otimes V_n^G$ into V_{m+n}^G ; by Pouzet's result, it is injective on the projective Segre variety, and a little dimension theory gets the result.

It seems very likely that better understanding of the algebra $\mathcal{A}[G]$ would have further implications for growth rate.

Let \mathcal{F} be a family of subsets of Ω . A subset T is transversal to \mathcal{F} if it intersects each member of \mathcal{F} . The transversality of \mathcal{F} is the minimum cardinality of a transversal.

Let \mathcal{F} be a family of subsets of Ω . A subset T is transversal to \mathcal{F} if it intersects each member of \mathcal{F} . The transversality of \mathcal{F} is the minimum cardinality of a transversal.

A lemma due to Peter Neumann shows that, if G has no finite orbits on Ω , then any orbit of G On finite sets has infinite transversality.

Let \mathcal{F} be a family of subsets of Ω . A subset T is transversal to \mathcal{F} if it intersects each member of \mathcal{F} . The transversality of \mathcal{F} is the minimum cardinality of a transversal.

A lemma due to Peter Neumann shows that, if G has no finite orbits on Ω , then any orbit of G On finite sets has infinite transversality.

Pouzet shows that, if $f \in V_m$ and $g \in V_n$ satisfy fg = 0, then the transversality of $supp(f) \cup supp(g)$ is finite, and is bounded by a function of m and n. (Here supp(f) denotes the support of f.)

Let \mathcal{F} be a family of subsets of Ω . A subset T is transversal to \mathcal{F} if it intersects each member of \mathcal{F} . The transversality of \mathcal{F} is the minimum cardinality of a transversal.

A lemma due to Peter Neumann shows that, if G has no finite orbits on Ω , then any orbit of G On finite sets has infinite transversality.

Pouzet shows that, if $f \in V_m$ and $g \in V_n$ satisfy fg = 0, then the transversality of $supp(f) \cup supp(g)$ is finite, and is bounded by a function of m and n. (Here supp(f) denotes the support of f.)

These two results clearly conflict with each other.

Comments

Here is Pouzet's theorem again:

Theorem

If $f \in V_m$ and $g \in V_n$ satisfy fg = 0, then the transversality of $\operatorname{supp}(f) \cup \operatorname{supp}(g)$ is finite, and is bounded by a function of m and n.

Comments

Here is Pouzet's theorem again:

Theorem

If $f \in V_m$ and $g \in V_n$ satisfy fg = 0, then the transversality of $\operatorname{supp}(f) \cup \operatorname{supp}(g)$ is finite, and is bounded by a function of m and n.

The proof of this makes it clear that it is another kind of 'Ramsey theorem'. If $\tau(m,n)$ denotes the smallest t such that the transversality is at most t, then we have the interesting problem of finding $\tau(m,n)$. Pouzet shows that $\tau(m,n) \geq (m+1)(n+1) - 1$. On the other hand, the upper bounds coming from his proof are really astronomical!