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Chromatic polynomial

The chromatic polynomial PΓ(x) of the graph Γ has the
property that, for positive integers k, PΓ(k) is the number of
proper k-colourings of Γ.

A positive integer k is a root of PΓ(x) if and only if k is smaller
than the chromatic number of Γ.

A chromatic root is a root of a chromatic polynomial.

I There are no chromatic roots in the intervals (−∞, 0),
(0, 1), or (1, 32

27 ] (Jackson)
I Real chromatic roots are dense in [ 32

27 , ∞) (Thomassen)
I Complex chromatic roots are dense in C (Sokal)
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Orbit-counting Lemma

Let G be a group of automorphisms of a graph Γ. We want to
count G-orbits on the set of proper colourings of Γ. The key tool
is the Orbit-counting Lemma:

Theorem
Let G act on a set X. Then the number of orbits of G on X is equal to
the average number of fixed points on X of the elements of G:

# Orbits(G, X) =
1
|G| ∑

g∈G
fixX(g).

Said otherwise, the number of orbits is the expected number of
fixed points of a random element of G.
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Orbital chromatic polynomial

Let g be an automorphism of a graph Γ. Denote by Γ/g the
graph obtained by shrinking every cycle of g to a single vertex.
The number of k-colourings of Γ fixed by g is equal to the
number of colourings of Γ/g. For a colouring is fixed by g if
and only if it is constant on the cycles of g (and so induces a
proper colouring of Γ/g).

So, if G is a group of automorphisms of Γ, define the orbital
chromatic polynomial of Γ and G to be

OPΓ,G(x) =
1
|G| ∑

g∈G
PΓ/g(x).

Then for positive integers k, the number of orbits of G on the
k-colourings of Γ is OPΓ,G(k).
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Orbital chromatic roots

An orbital chromatic root is a root of the orbital chromatic
polynomial OPΓ,G for some graph Γ and group G.

Taking G to be the trivial group, we see that every chromatic
root is an orbital chromatic root.

Here is an example to show that, unlike chromatic roots, orbital
chromatic roots can be negative.

Take Γ to be the null graph on n vertices and G the symmetric
group Sn. Then an orbit on k-colourings is a choice of n things
from a set of k, where repetitions are allowed and order is not

significant. This number is
(

n + k− 1
n

)
. So

OPΓ,G(x) =
1
n!

x(x + 1) · · · (x + n− 1),

with roots 0,−1, . . . ,−(n− 1).
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Orbital chromatic roots, continued

Theorem
Real orbital chromatic roots are dense in R.

Proof.
Take Γ to consist of m triangles and G to be the symmetric
group Sm. Then

OPΓ,G(x) =
1

m!
q(x)(q(x) + 1) · · · (q(x) + m− 1),

where q(x) = x(x− 1)(x− 2).
So every root of the equation x(x− 1)(x− 2) = −k for k ∈N is
an orbital chromatic root.
The equation x(x− 1)(x− 2) = −k has a unique negative root
αk, and the spacing of the αk becomes denser as k increases.
Now by taking the join with a complete graph of size s, we can
translate the roots to the right by any integer s.
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Orbital chromatic roots, continued
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Parity, 1

Theorem
The sign of PΓ(x) is (−1)v for x < 0, (−1)v+c for x ∈ (0, 1), and
(−1)v+c+b for x ∈ (1, 32

27 ], where v, c, b denote the numbers of
vertices, connected components, and blocks of Γ.

Since a permutation is even if and only if the numbers of points
and cycles are congruent mod 2, we have:

Theorem
Let V and C be the sets of vertices and connected components of Γ.

I (a) Suppose that every element of G is an even permutation of V.
Then OPΓ,G(x) has no roots in (−∞, 0).

I (b) Suppose that every element of G is an even permutation of
V ∪ C. Then OPΓ,G(x) has no roots in (0, 1).
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Parity, 2

The analogous result for blocks is false. The reason is that,
while vertices and connected components of Γ/g correspond to
cycles of g on vertices and connected components of Γ, the
analogous statement is not true for blocks.

Problem
Is it true that the real roots of OPΓ,G(x) are bounded above by the
largest real root of PΓ(x)?
This is known in some cases, for example when Γ is a null
graph and G any permutation group on the vertices: in this
case OPΓ,G(x) is a specialisation of the cycle index of G,
obtained by putting all the variables equal to x.

Problem
Is it true that the real roots of OPΓ,G(x), where Γ is 2-connected and
G consists of even permutations of the vertex set, are dense in [1, ∞)?
Under these hypotheses, the only root less than 1 is 0.
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Flow and tension polynomials

Take a fixed but arbitrary orientation of the edges of Γ. A flow
on Γ with values in the abelian group A is a function from the
oriented edges of Γ to A with the property that the net flow into
any vertex is zero (calculated in A).

The number of nowhere-zero A-flows is a polynomial in A, the
flow polynomial, and doesn’t depend on the structure of A.

Dually, a tension is a function from oriented edges to A so that
the net flow around any circuit is zero. The number of
nowhere-zero tensions is also a polynomial in |A|.

The flow and tension polynomials are specialisations of the
Tutte polynomial of Γ.
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Orbital flow polynomial

Things are more complicated for orbits on flows: the answer
does depend on the structure of A. Precisely, given a group G of
automorphisms of the graph Γ, there is a polynomial
OFΓ,G(x0, x1, x2, ldots) in indeterminates indexed by N, such
that the number of G-orbits on nowhere-zero A-flows on Γ is
OFΓ,G(a0, a1, . . .), where ai is the number of solutions of ix = 0
in the abelian group A. Note that a0 = |A| and a1 = 1.

This orbital flow polynomial is a specialisation of an orbital
Tutte polynomial of Γ and G, which involves two potentially
infinite families of variables.

If the variable xi actually occurs, then G must contain an
element of order i. Thus we recover Tutte’s observation by
taking G to be the trivial group.
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Orbital flow roots

An orbital flow root is a root of the polynomial OF1
Γ,G obtained

by putting xi = 1 for all i > 0, for some pair (Γ, G). It counts
orbits on flows in the case where gcd(|A|, |G|) = 1.

Theorem
Real orbital flow roots are dense in (−∞, 0).

The graphs used to prove this theorem can be taken to be
connected simple planar graphs.

The method of proof also shows that every value 1/k, for
k ∈N, is a limit point of real orbital flow roots.

The limitation in the method is that there is no way to
“translate” orbital flow roots to the right, as there is for orbital
chromatic roots!
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Invariant factors and duality, 1

Let R be a principal ideal domain. Given an m× n matrix M
over R, we define the row space of ρ(M) and the null space
ν(M) as usual:

ρ(M) = {yM : y ∈ Rm},
ν(M) = {x ∈ Rn : Mx> = 0}.

M can be put into Smith normal form by elementary row and
column operations: this is a matrix with r non-zero diagonal
elements d1, . . . , dr and all other entries zero, where di divides
di+1 for i = 1, . . . , r− 1. The elements d1, . . . , dr are uniquely
determined up to multiplication by units of R. They are the
invariant factors of M. By convention, we also take 0 to be an
invariant factor with multiplicity n− r, so that there are n
invariant factors in all.
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Invariant factors and duality, 2

Two matrices M and M∗ over the PID R are dual if the row
space of M is equal to the null space of M∗ and vice versa.

A matrix is totally unimodular if every subdeterminant is zero or
a unit. (This property is not preserved by elementary
operations.)

Theorem
Let M be a matrix over R. Then the following are equivalent:

I M has a dual;
I all invariant factors of M are zero or units;
I M is equivalent (by elementary row and column operations) to a

totally unimodular matrix.

If Γ is a graph with oriented edges, and M and M∗ are its signed
vertex-edge and cycle-edge incidence matrices, then M and M∗

are dual.
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Orbital Tutte polynomial, 1

Assume that (M, M∗) is a dual pair over a principal ideal
domain R. The linearly independent sets of columns of M are
the independent sets of a matroid. The linearly independent
sets of columns of M∗ form the dual matroid.

An automorphism of M to be an automorphism of the free
module Rn (where n is the number of columns of M) which
preserves the row space and null space of M.

If g is an automorphism of M (represented as an n× n matrix),
and 1 is the identity matrix, set

Mg =
(

M
g− 1

)
, M∗g =

(
M∗

g− 1

)
.

For any subset S of E = {1, . . . , n}, and any matrix N with n
columns, we let N[S] be the submatrix of N consisting of the
columns with indices in S.
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Orbital Tutte polynomial, 2

Take two sets (xi : i ∈ I) and (x∗i : i ∈ I) of indeterminates,
where the index set I is the set of associate classes in R. For any
matrix N, let x(N) be the monomial defined as follows: take the
invariant factors of N (completed with zeros so that the number
of them is equal to the number of columns of N), and multiply
the corresponding indeterminates. Define x∗(N) similarly,
using the other set of indeterminates.

Now let G be a finite group of automorphisms of M, and define
the orbital Tutte polynomial OT(M, G) in the indeterminates
(xi, x∗i : i ∈ I) as follows:

OT(M, G) =
1
|G| ∑

g∈G
∑

S⊆E
x(Mg[S])x∗(M∗g [E \ S]).

Theorem
If G is the trivial group, then OT(M, G) involves only x0, x1, x∗0 and
x∗1 ; the substitution x1 = x∗1 = 1, x0 = y− 1, x∗0 = x− 1 gives the
Tutte polynomial of M.
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Graphs

For a graph Γ, let OT(Γ, G) denote OT(M, G), where M is the
signed vertex-edge incidence matrix of Γ.

Theorem
Let M be the incidence matrix of a graph Γ over Z, and let G be a
group of automorphisms of Γ. Let A be a finite Abelian group. Then
the substitution xi ← αi(A), x∗i ← −1 (for all i) in OT(Γ, G) gives
the number of G-orbits on nowhere-zero A-flows on Γ, while the
substitution xi ← −1, x∗i ← αi(A) gives the number of G-orbits on
nowhere-zero A-tensions on Γ.

Theorem
Let Γ be a connected graph. Then the orbital chromatic polynomial of
(Γ, G; k) is obtained from the orbital tension polynomial by
substituting x∗0 = k, x∗i = 1 for i > 0, and multiplying by k.
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Supports

Theorem

I Let fm be the number of G-orbits on A-flows supported on
precisely n−m edges of Γ. Then

∑ fmxm = OT(Γ, G; xi ← αi(A), x∗i ← x− 1).

I Let tm be the number of G-orbits on A-tensions supported on
precisely n−m edges of Γ. Then

∑ tmxm = OT(Γ, G; xi ← x− 1, x∗i ← αi(A)).



Orbital weight enumerator

A linear code over GF(q) is the row space of a generator matrix
M over GF(q), and is the null space of a parity check matrix M∗

(the generator matrix of the dual code). These matrices are
duals; so if G is a group of automorpisms of C, the orbital Tutte
polynomial P is defined as before. Since GF(q) is a field, P
involves only the variables x0, x1, x∗0 , x∗1 .

The orbital weight enumerator is the homogeneous polynomial

WC,G(X, Y) =
n

∑
i=0

aiXn−iYi,

where ai is the number of G-orbits on words of weight i in C.

Theorem
Let G be an automorphism group of a linear code over GF(q). Then
the orbital weight enumerator C is obtained from the orbital Tutte
polynomial by the substitution

x0 = x1 = X− Y, x∗0 = qY, x∗1 = Y.
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