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Automata

An automaton is a machine which can be in any of a set of
internal states which cannot be directly observed.

We can force the machine to make any desired sequence of
transitions (each transition being a mapping from the set of
states to itself).

We can represent an automaton as an edge-coloured directed
graph, where the vertices are the states, and the colours are the
transitions. We require that the graph should have exactly one
edge of each colour leaving each vertex.
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Synchronization

Suppose that you are given an automaton (whose structure you
know) in an unknown state. You would like to put it into a
known state, by applying a sequence of transitions to it. Of
course this is not always possible!

A reset word is a sequence of transitions which take the
automaton from any state into a known state; in other words,
the composition of the corresponding transitions is a constant
mapping.
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You can check that (Blue, Red, Blue, Blue) is a reset word which
takes you to room 3 no matter where you start.
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Applications

I Industrial robotics: pieces arrive to be assembled by a
robot. The orientation is critical. You could equip the robot
with vision sensors and manipulators so that it can rotate
the pieces into the correct orientation. But it is much
cheaper and less error-prone to regard the possible
orientations of the pieces as states of an automaton on
which transitions can be performed by simple machinery,
and apply a reset word before the pieces arrive at the robot.

I Bioinformatics: If a soup of DNA molecules is to perform
some computation, we need the molecules to be all in a
known state first. We can simultaneously apply a reset
word to all of them, where the transitions are induced by
some chemical or biological process.
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The Černý conjecture

How do we decide whether a reset word exists? We can search
for one by trial and error; how far do we have to go before we
can conclude that there is no reset word?

Problem
Suppose that an n-vertex automaton has a reset word. Show that it
has one of length at most (n− 1)2.
This is the Černý conjecture, and is still open. If true, the bound
would be best possible.



The Černý conjecture

How do we decide whether a reset word exists? We can search
for one by trial and error; how far do we have to go before we
can conclude that there is no reset word?

Problem
Suppose that an n-vertex automaton has a reset word. Show that it
has one of length at most (n− 1)2.
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The Černý conjecture

How do we decide whether a reset word exists? We can search
for one by trial and error; how far do we have to go before we
can conclude that there is no reset word?

Problem
Suppose that an n-vertex automaton has a reset word. Show that it
has one of length at most (n− 1)2.
This is the Černý conjecture, and is still open. If true, the bound
would be best possible.



A group-theoretic approach

At the other extreme from a synchronizing automaton is one in
which all the transitions are permutations (and generate a
permutation group). One approach to the Černý conjecture is
to separate out this difficulty.

A permutation group G on a set Ω is said to be synchronizing
if, whenever f : Ω → Ω is a mapping which is not a
permutation, the semigroup generated by G and f contains a
reset word (a constant mapping).

Proposition

A permutation group G on Ω is non-synchronizing if and only if
there is a non-trivial partition π of Ω and a subset ∆ of Ω such that,
for all g ∈ G, ∆g is a section (of transversal) of π.

Corollary

A synchronizing group is primitive.
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to separate out this difficulty.

A permutation group G on a set Ω is said to be synchronizing
if, whenever f : Ω → Ω is a mapping which is not a
permutation, the semigroup generated by G and f contains a
reset word (a constant mapping).

Proposition

A permutation group G on Ω is non-synchronizing if and only if
there is a non-trivial partition π of Ω and a subset ∆ of Ω such that,
for all g ∈ G, ∆g is a section (of transversal) of π.

Corollary

A synchronizing group is primitive.



A group-theoretic approach

At the other extreme from a synchronizing automaton is one in
which all the transitions are permutations (and generate a
permutation group). One approach to the Černý conjecture is
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Graph-theoretic characterisations

These properties can be detected by undirected graphs
admitting the group G. The clique number ω(X) is the
cardinality of the largest complete subgraph of X; the chromatic
number χ(X) is the smallest number of colours required to
colour the vertices so that adjacent vertices get different
colours. Clearly ω(X) ≤ χ(X), since vertices of a complete
subgraph must get different colours.

Proposition

Let G be a permutation group on Ω, with |Ω| = n. Then G is
non-synchronizing if and only if there is a non-trivial G-invariant
graph X for which ω(X) = χ(X).
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Towards the Černý conjecture

Suppose that G is a synchronizing permutation group. What
further properties do we need in order that the Černý
conjecture should hold for any automaton obtained by
adjoining a non-permutation to a set of generators of G?

Let f be a non-permutation. Without loss of generality, a reset
word will look like

fg1fg2f · · · fgr−1f

for g1, . . . , gr ∈ G. We need to bound r and also the expressions
for g1, . . . , gr in terms of generators.
Suppose that G is “large” enough that, whatever set S is the
image of fg1f · · · fgi−1f , we can always move it by an element
gi ∈ G to a position where f will not act one-to-one on it. Then
the image can be made strictly smaller with each application of
f , and we have r ≤ n− 1.
Arnold and Steinberg proved the Černý conjecture in some
special cases by this method.
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