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Cayley graphs

Let G be a group. A Cayley graph for G is a graph with vertex
set G admitting G (acting by right multiplication) as a group of
automorphisms.

Equivalently, it has edge set {{g, sg} : g ∈ G, s ∈ S}, where
S = S−1 (to make it undirected) and 1 /∈ S (to forbid loops).

We denote this graph by Cay(G, S).

Sometimes it is assumed that S generates G (equivalently, the
graph is connected), but this is not necessarily the case here.
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Shift graphs

These are Cayley graphs for the infinite cyclic group Z. By
abuse of notation, we let S denote the set of positive elements
in the connection set, and write Γ(S) for the graph
Cay(Z, S ∪ (−S)).

Thuus, x ∼ y in Γ(S) if and only if |x− y| ∈ S, where S ⊆ N.

The graph Γ(S) has a distinguished shift automorphism, the
map x 7→ x + 1.

It is easy to show that, if Γ(S) is isomorphic to Γ(S′), then the
two corresponding shift automorphisms of this graph are
conjugate (in the automorphism group of Γ) if and only if
S = S′.
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The random graph

The following remarkable theorem was proved by Erdős and
Rényi in 1963.

Theorem
There is a countable graph R such that, if a random graph X on a
fixed countable vertex set is given by selecting edges independently
with probability 1/2, then Prob(X ∼= R) = 1.

Their proof was non-constructive, though explicit constructions
are known. I will give one below.
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Measure and category

Two familiar techniques for non-constructive existence proofs
are:

I Show that the set of all objects is a measure space, in which
the “interesting” objects form a set of full measure. (Often
the space has measure 1, and the argument can be phrased
in terms of probability. This is the case in the Erdős–Rényi
theorem.)

I Show that the set of all objects is a complete metric space,
in which the interesting sets form a residual set, in the
sense of Baire category (the complement of a set of the first
category – that is, a set which contains a countable
intersection of open dense sets).

In the Erdős–Rényi Theorem, either measure or category can be
used: the graph R has measure 1 and is residual in the space of
all graphs.
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A cautionary tale

The set of all binary sequences is a probability space (recording
the outcome of a sequence of coin tosses) and a metric space
(where the distance between two sequences is 1/2n if they first
differ in the nth position).

By the Law of Large Numbers, almost all sequences (in the
sense of measure) have density 1/2.

However, sequences with upper density 1 and lower density 0
form a residual set.

Measure and category do agree that almost all sequences are
universal (see next slide).
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Universal sets

A binary sequence s is universal if every finite binary sequence
σ occurs as a consecutive subsequence of s (i.e. there exists N
such that sN+i = σi for i = 0, . . . , l(σ)− 1).

The set of universal sequences has measure 1 and is residual.

A binary sequence is the characteristic function of a subset
S ⊆ N. We will say that the set S is universal if its characteristic
function is universal.
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R as shift graph

Proposition

For S ⊆ N, the graph Γ(S) is isomorphic to R if and only if S is
universal.
Ths shows that almost all shift graphs (in the sense of either
measure or category) are isomorphic to R. In addition, since
sets of full measure or residual sets have cardinality 2ℵ0 , it
follows:

Corollary

The graph R has 2ℵ0 cyclic automorphisms, pairwise not conjugate in
Aut(R).
This also gives us an explicit construction of R, by taking an
explicit universal set (for example, concatenate the base 2
representations of the natural numbers).
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R as Cayley graph

Thus a random Cayley graph for Z is almost surely R. The
same holds for a much wider class of countable groups.

In a group X, a square-root set is a set of the form
√

a = {x ∈ X : x2 = a};

it is non-principal if a 6= 1.

Theorem
Let X be a countable group which is not the union of finitely many
translates of non-principal square-root sets. Then the set of Cayley
graphs for X which are isomorphic to R is residual and has measure 1.

Many (but not all) countable groups satisfy this condition. For
example, in Z, any element has at most one square root.
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Countable homogeneous graphs

A graph Γ is homogeneous if every isomorphism between
finite (induced) subgraphs of Γ extends to an automorphism of
Γ. (An indced subgraph is a subset of Γ in which both edges
and nonedges are the same as in Γ.)

The age of a graph Γ is the class of all finite graphs embeddable
in Γ (as induced subgraphs).

A theorem of Fraı̈ssé shows that there is at most one countable
homogeneous graph with any given age.

Fraı̈ssé’s Theorem also gives a necessary and sufficient
condition on a class to be the age of a countable homogeneous
graph. The crucial condition is the amalgamation property: if
two elements of the age have isomorphic substructures, they
can be glued together along these substructures inside some
structure in the age.
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The theorem of Lachlan and Woodrow

Theorem
A countably infinite homogeneous graph is one of the following:

I a disjoint union of complete graphs of the same size;
I complement of the preceding;
I the unique countable homogeneous graph whose age is the class

of finite Kn-free graphs for n ≥ 3 (this is the Henson graph Hn);
I complement of the preceding;
I the random graph R.

The first two classes are not very interesting!
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Cyclic automorphisms of Henson’s graphs

Henson showed that H3 admits cyclic shifts but Hn does not for
n > 3.

Is H3 the random triangle-free Cayley graph for Z?

Note that the Cayley graph Γ(S) is triangle-free if and only if S
is sum-free, that is, x, y ∈ S ⇒ x + y /∈ S. For x, y, x + y ∈ S if
and only if {0, x, x + y} is a triangle in Γ(S).
This leads us to the following definition:
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Sum-free sets and sf-universal sets

A subset S of N is sf-universal if and only if
I S is sum-free;
I for any finite binary sequence σ, either

I there exist i < j with σi = σj = 1 and j− i ∈ S; or
I σ occurs as a consecutive subsequence of the characteristic

function of S.

In other words, S is a sum-free set in which every subsequence
not forbidden by the sum-free condition actually occurs
somewhere.
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sf-universal sets and Henson’s graph

Proposition

Γ(S) ∼= H3 if and only if S is sf-universal.

Proposition

The sf-universal sets are residual in the class of sum-free sets.
So H3 is the generic cyclic triangle-free graph in the sense of
Baire category.

What about measure?
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Random sum-free sets

There is a simple measure for sum-free sets:

Consider the natural numbers in turn. When considering
n, if n = x + y where x, y ∈ S, then n /∈ S; otherwise toss a
fair coin to decide.

The first surprise is that we do not obtain an sf-universal set
almost surely:

Proposition

The probability that S consists entirely of odd numbers is non-zero (it
is about 0.218).

Conditioned on S consisting of odd numbers, it is almost surely
of the form 2S′ + 1, where S′ is universal; that is, Γ(S) is almost
surely the universal bipartite graph.
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Why?

If we are constructing a random sum-free set S and have no
even numbers in a long initial segment, then the odd numbers
in the segment are random, and so the next even number has
high probability of being excluded; but the next odd number
still has prbability 1/2 of being included.

However, the pattern can change. For example, suppose that
we chose 1 and 3 but not 5 or 7. Then we might choose 8 and
10, and the event that all subsequent numbers are congruent to
1, 3, 8 or 10 mod 11 has positive probability.
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1, 3, 8 or 10 mod 11 has positive probability.



Other events with positive measure

A subset T of Z/(n) is complete sum-free if it is sum-free, and
if for any z /∈ T there exist x, y ∈ T such that z = x + y.

For
example, {2, 3} mod 5 is complete sum-free; so is the set
{1, 3, 8, 10} mod 11 we saw on the last slide.

Proposition

The probability that S is contained in the set of congruence classes
corresponding to a fixed complete sum-free set mod n is strictly
positive.

Proposition

Prob(2 is the only even number in S) > 0.

The last two results have a common generalisation. The class of
sum-free sets which fall into a complete sum-free set mod n
after some point also has positive probability.
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What else?

But it is unlikely that we have yet caught almost all sum-free
sets!

Conjecture

Prob(S is sf-universal) = 0.

It is not feasible to go on finding classes with positive
probability and adding up the probabilities until we get
everything! The probability of getting a set of odd numbers is
only known to three decimal places.
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How many sum-free subsets of {1, . . . , n}?

There are 2dn/2e sets consisting of odd numbers.

There are the same number of subsets of {dn/2e, . . . , n}. These
two classes have only a small overlap.

This is more or less all:

Theorem
The number of sum-free subsets of {1, . . . , n} is asymptotically ce2n/2

or co2n/2 as n → ∞ through even or odd values. Almost all of them
are either sets of odd numbers or have smallest element at least
n/2−w(n), for any w(n) → ∞ as n → ∞.

This was conjectured by Paul Erdős and me, and proved by
Ben Green and independently by Sasha Sapozhenko.

Note that the other sets of positive measure that we saw do not
contribute asymptotically.
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Completing the square

A subset of N is AP-free if it fails to contain arbitrarily long
arithmetic progressions.

Theorem

I (Schur) N cannot be partitioned into finitely many sum-free
sets.

I (van der Waerden) N cannot be partitioned into finitely many
AP-free sets.

I (Szemerédi) An AP-free set must have density zero.

The “fourth statement” is false, since the odd numbers are
sum-free and have density 1/2. But perhaps almost all
sum-free sets have density zero . . .
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I (Szemerédi) An AP-free set must have density zero.

The “fourth statement” is false, since the odd numbers are
sum-free and have density 1/2. But perhaps almost all
sum-free sets have density zero . . .



Completing the square

A subset of N is AP-free if it fails to contain arbitrarily long
arithmetic progressions.

Theorem

I (Schur) N cannot be partitioned into finitely many sum-free
sets.

I (van der Waerden) N cannot be partitioned into finitely many
AP-free sets.
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Density

Conjecture

The density of a sf-universal set is zero.

Since almost all sum-free sets are sf-universal (in the sense of
Baire category), this would be a substitute for the missing
“density version” of Schur’s Theorem.

Direct constructions of sf-universal sets always proceed by
allowing longer and longer empty gaps between the small
pieces where the action is, and so have density zero.
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Density of a random sum-free set

Empirically the density of a random sum-free set has spectrum
like this:

The sets of odd numbers, and of subsets of {2, 3} or {1, 4}
mod 5, are clearly visible.

Perhaps the density is discrete above 1/6 but has a continuous
part to its distribution below this value . . .
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Henson’s graphs as Cayley graphs

Henson’s triangle-free graph H3, like R, is a Cayley graph for a
fairly large class of countable groups.

For n > 3, we observed that Hn is not a Cayley graph for Z.
More generally, it is not a normal Cayley graph for any
countable group X (this is a graph invariant under left and
right multiplication; equivalently, one in which the connection
set S is closed under conjugation).

Problem
Is Hn a Cayley graph for n > 3?
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Cyclic metric spaces

There are many homogeneous metric spaces (those for which
any isometry between finite subsets extends to a global
isometry), and no classification.

Among these are countable universal metric spaces for the
following sets of values of the metric:

I all positive integers up to k, for some fixed k;
I all positive integers;
I all positive rational numbers.

The first for k = 2 is the random graph (distance 1 is adjacency,
distance 2 non-adjacency); this has a cyclic shift automorphism.
It is not known whether there is such an automorphism for
k > 2.

The second and third types do have cyclic shift automorphisms.



Cyclic metric spaces

There are many homogeneous metric spaces (those for which
any isometry between finite subsets extends to a global
isometry), and no classification.

Among these are countable universal metric spaces for the
following sets of values of the metric:

I all positive integers up to k, for some fixed k;

I all positive integers;
I all positive rational numbers.

The first for k = 2 is the random graph (distance 1 is adjacency,
distance 2 non-adjacency); this has a cyclic shift automorphism.
It is not known whether there is such an automorphism for
k > 2.

The second and third types do have cyclic shift automorphisms.



Cyclic metric spaces

There are many homogeneous metric spaces (those for which
any isometry between finite subsets extends to a global
isometry), and no classification.

Among these are countable universal metric spaces for the
following sets of values of the metric:

I all positive integers up to k, for some fixed k;
I all positive integers;

I all positive rational numbers.
The first for k = 2 is the random graph (distance 1 is adjacency,
distance 2 non-adjacency); this has a cyclic shift automorphism.
It is not known whether there is such an automorphism for
k > 2.

The second and third types do have cyclic shift automorphisms.



Cyclic metric spaces

There are many homogeneous metric spaces (those for which
any isometry between finite subsets extends to a global
isometry), and no classification.

Among these are countable universal metric spaces for the
following sets of values of the metric:

I all positive integers up to k, for some fixed k;
I all positive integers;
I all positive rational numbers.

The first for k = 2 is the random graph (distance 1 is adjacency,
distance 2 non-adjacency); this has a cyclic shift automorphism.
It is not known whether there is such an automorphism for
k > 2.

The second and third types do have cyclic shift automorphisms.



Cyclic metric spaces

There are many homogeneous metric spaces (those for which
any isometry between finite subsets extends to a global
isometry), and no classification.

Among these are countable universal metric spaces for the
following sets of values of the metric:

I all positive integers up to k, for some fixed k;
I all positive integers;
I all positive rational numbers.

The first for k = 2 is the random graph (distance 1 is adjacency,
distance 2 non-adjacency); this has a cyclic shift automorphism.
It is not known whether there is such an automorphism for
k > 2.

The second and third types do have cyclic shift automorphisms.



Cyclic metric spaces

There are many homogeneous metric spaces (those for which
any isometry between finite subsets extends to a global
isometry), and no classification.

Among these are countable universal metric spaces for the
following sets of values of the metric:

I all positive integers up to k, for some fixed k;
I all positive integers;
I all positive rational numbers.

The first for k = 2 is the random graph (distance 1 is adjacency,
distance 2 non-adjacency); this has a cyclic shift automorphism.
It is not known whether there is such an automorphism for
k > 2.

The second and third types do have cyclic shift automorphisms.



The Urysohn space

There is a unique (up to isometry) homogeneous universal
Polish space (complete separable metric space), the celebrated
Urysohn space.

Note that interesting Polish spaces cannot be countable;
separability replaces countability here.

The Urysohn space is the completion of the coutable
homogeneous universal metric space with rational distances.
(This space is sometimes called the “rational Urysohn space”.)

Anatoly Vershik has shown that the Urysohn space is the
“random Polish space” (in a fairly general sense) and also the
“residual Polish space”.
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Cyclic shifts of the Urysohn space

The cyclic shift of the rational Urysohn space extends to an
isometry of the (real) Urysohn space all of whose orbits are
dense.

The closure of the group it generates is an Abelian group acting
transitively on the points of the Urysohn space. So this space
has an Abelian group structure (indeed many such structures).

It is not known which isomorphism types of Abelian groups
can act transitively on the Urysohn space. The Abelian group
of exponent 2 can, while that of exponent 3 cannot. As a special
case, it is not known which isomorphism types arise as closures
of cyclic shifts of the rational Urysohn space.
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