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Automata

An automaton is a machine which can be in any of a set of
internal states which cannot be directly observed.

We can force the machine to make any desired sequence of
transitions (each transition being a mapping from the set of
states to itself).

We can represent an automaton as an edge-coloured directed
graph, where the vertices are the states, and the colours are the
transitions. We require that the graph should have exactly one
edge of each colour leaving each vertex.
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Synchronization

Suppose that you are given an automaton (whose structure you
know) in an unknown state. You would like to put it into a
known state, by applying a sequence of transitions to it. Of
course this is not always possible!

A reset word is a sequence of transitions which take the
automaton from any state into a known state; in other words,
the composition of the corresponding transitions is a constant
mapping.
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You can check that (Blue, Red, Blue, Blue) is a reset word which
takes you to state 3 no matter where you start.
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Applications

I Industrial robotics: pieces arrive to be assembled by a
robot. The orientation is critical. You could equip the robot
with vision sensors and manipulators so that it can rotate
the pieces into the correct orientation. But it is much
cheaper and less error-prone to regard the possible
orientations of the pieces as states of an automaton on
which transitions can be performed by simple machinery,
and apply a reset word before the pieces arrive at the robot.

I Bioinformatics: If a soup of DNA molecules is to perform
some computation, we need the molecules to be all in a
known state first. We can simultaneously apply a reset
word to all of them, where the transitions are induced by
some chemical or biological process.
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The road-colouring problem

Trivially, a directed graph with constant out-degree can be
edge-coloured to produce an automaton. The conditions in the
next paragraph are easily seen to be necessary for the resulting
automaton to have a reset word.

Problem
Suppose that D is a directed graph in which all edges have
out-degree d. Then the edges of D can be coloured with d colours to
produce an automaton with a reset word if and only if D is strongly
connected and the greatest common divisor of the cycle lengths in D
is 1.

This was the road-colouring conjecture until it was proved by
Avraham Trahtman last year.
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The Černý conjecture

How do we decide whether a reset word exists? We can search
for one by trial and error; how far do we have to go before we
can conclude that there is no reset word?

Problem
Suppose that an n-vertex automaton has a reset word. Show that it
has one of length at most (n− 1)2.

This is the Černý conjecture, and is still open. If true, the bound
would be best possible.



The Černý conjecture

How do we decide whether a reset word exists? We can search
for one by trial and error; how far do we have to go before we
can conclude that there is no reset word?

Problem
Suppose that an n-vertex automaton has a reset word. Show that it
has one of length at most (n− 1)2.
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A group-theoretic approach

At the other extreme from a synchronizing automaton is one in
which all the transitions are permutations (and generate a
permutation group). One approach to the Černý conjecture is
to separate out this difficulty.

A permutation group G on a set Ω is said to be synchronizing if,
whenever f : Ω → Ω is a mapping which is not a permutation,
the semigroup generated by G and f contains a reset word (a
constant mapping).

Which permutation groups are synchronizing?
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Synchronizing groups

This condition can be reformulated in more group-theooretic
terms.

Proposition

A permutation group G on Ω is non-synchronizing if and only if
there is a non-trivial partition π of Ω and a subset ∆ of Ω such that,
for all g ∈ G, ∆g is a section (of transversal) of π.

Corollary

A synchronizing group is primitive.

For if there is a G-invariant partition π, then any section of π
has the required property.
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Separating groups

Let G be transitive on Ω, with |Ω| = n. Let Γ and ∆ be subsets
of Ω, with |Γ| = k, |∆| = l.

Lemma
If kl < n, then there exists g ∈ G with Γ ∩ ∆g = ∅.
We say that G is separating if the same conclusion holds when
kl = n.

Proposition

A separating group is synchronizing.
For if G is non-synchronizing, and Γ is a part of a partition π
for which (π, ∆) witness the non-synchronization, then by
assumption |Γ ∩ ∆g| = 1 for all g ∈ G.



Separating groups

Let G be transitive on Ω, with |Ω| = n. Let Γ and ∆ be subsets
of Ω, with |Γ| = k, |∆| = l.

Lemma
If kl < n, then there exists g ∈ G with Γ ∩ ∆g = ∅.

We say that G is separating if the same conclusion holds when
kl = n.

Proposition

A separating group is synchronizing.
For if G is non-synchronizing, and Γ is a part of a partition π
for which (π, ∆) witness the non-synchronization, then by
assumption |Γ ∩ ∆g| = 1 for all g ∈ G.



Separating groups

Let G be transitive on Ω, with |Ω| = n. Let Γ and ∆ be subsets
of Ω, with |Γ| = k, |∆| = l.

Lemma
If kl < n, then there exists g ∈ G with Γ ∩ ∆g = ∅.
We say that G is separating if the same conclusion holds when
kl = n.

Proposition

A separating group is synchronizing.
For if G is non-synchronizing, and Γ is a part of a partition π
for which (π, ∆) witness the non-synchronization, then by
assumption |Γ ∩ ∆g| = 1 for all g ∈ G.



Separating groups

Let G be transitive on Ω, with |Ω| = n. Let Γ and ∆ be subsets
of Ω, with |Γ| = k, |∆| = l.

Lemma
If kl < n, then there exists g ∈ G with Γ ∩ ∆g = ∅.
We say that G is separating if the same conclusion holds when
kl = n.

Proposition

A separating group is synchronizing.

For if G is non-synchronizing, and Γ is a part of a partition π
for which (π, ∆) witness the non-synchronization, then by
assumption |Γ ∩ ∆g| = 1 for all g ∈ G.



Separating groups

Let G be transitive on Ω, with |Ω| = n. Let Γ and ∆ be subsets
of Ω, with |Γ| = k, |∆| = l.

Lemma
If kl < n, then there exists g ∈ G with Γ ∩ ∆g = ∅.
We say that G is separating if the same conclusion holds when
kl = n.

Proposition

A separating group is synchronizing.
For if G is non-synchronizing, and Γ is a part of a partition π
for which (π, ∆) witness the non-synchronization, then by
assumption |Γ ∩ ∆g| = 1 for all g ∈ G.



Separation and synchronization

Since synchronizing groups are primitive, the obvious first step
is to check primitive groups of small degree (up to a few
hundred) for these properties. MAGMA and GAP contain lists of
these groups. But the checking is non-trivial.

In particular, we only know a tiny handful of permutation
groups which are synchronizing but not separating; it would be
interesting to find out why this property is so rare.

Some of the examples come from finite geometry (involving
properties of ovoids and spreads in polar spaces), but others
appear to be “sporadic”.
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Graph-theoretic characterisations

These properties can be detected by undirected graphs
admitting the group G. The clique number ω(X) and the
independence number α(X) are the cardinalities of the largest
complete and null induced subgraphs of X; the chromatic
number χ(X) is the smallest number of colours required to
colour the vertices so that adjacent vertices get different
colours. Clearly ω(X) ≤ χ(X), since vertices of a complete
subgraph must get different colours.

Proposition

Let G be a permutation group on Ω, with |Ω| = n.
I G is synchronizing if and only if there is a non-trivial

G-invariant graph X for which ω(X) = χ(X).
I Let G be transitive. Then G is separating if and only if there is a

non-trivial G-invariant graph X such that ω(X) · α(X) = n.
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An application: homomorphisms and cores

A homomorphism from a graph X to a graph Y is a map from
the vertices of X to the vertices of Y which takes edges to edges
(we don’t care what it does to non-edges).

The core of a graph X is the smallest graph Y such that there are
homomorphisms in both directions between X and Y. For
example, a non-null graph is bipartite if and only if its core is a
single edge.

Finding the core of a graph is a hard computational problem!

Proposition

Let X be a graph whose automorphism group is transitive on
non-edges. Then either the core of X is a complete graph, or X is itself
a core.
However, deciding which possibility occurs is hard . . .



An application: homomorphisms and cores

A homomorphism from a graph X to a graph Y is a map from
the vertices of X to the vertices of Y which takes edges to edges
(we don’t care what it does to non-edges).

The core of a graph X is the smallest graph Y such that there are
homomorphisms in both directions between X and Y. For
example, a non-null graph is bipartite if and only if its core is a
single edge.

Finding the core of a graph is a hard computational problem!

Proposition

Let X be a graph whose automorphism group is transitive on
non-edges. Then either the core of X is a complete graph, or X is itself
a core.
However, deciding which possibility occurs is hard . . .



An application: homomorphisms and cores

A homomorphism from a graph X to a graph Y is a map from
the vertices of X to the vertices of Y which takes edges to edges
(we don’t care what it does to non-edges).

The core of a graph X is the smallest graph Y such that there are
homomorphisms in both directions between X and Y. For
example, a non-null graph is bipartite if and only if its core is a
single edge.

Finding the core of a graph is a hard computational problem!

Proposition

Let X be a graph whose automorphism group is transitive on
non-edges. Then either the core of X is a complete graph, or X is itself
a core.
However, deciding which possibility occurs is hard . . .



An application: homomorphisms and cores

A homomorphism from a graph X to a graph Y is a map from
the vertices of X to the vertices of Y which takes edges to edges
(we don’t care what it does to non-edges).

The core of a graph X is the smallest graph Y such that there are
homomorphisms in both directions between X and Y. For
example, a non-null graph is bipartite if and only if its core is a
single edge.

Finding the core of a graph is a hard computational problem!

Proposition

Let X be a graph whose automorphism group is transitive on
non-edges. Then either the core of X is a complete graph, or X is itself
a core.

However, deciding which possibility occurs is hard . . .



An application: homomorphisms and cores

A homomorphism from a graph X to a graph Y is a map from
the vertices of X to the vertices of Y which takes edges to edges
(we don’t care what it does to non-edges).

The core of a graph X is the smallest graph Y such that there are
homomorphisms in both directions between X and Y. For
example, a non-null graph is bipartite if and only if its core is a
single edge.

Finding the core of a graph is a hard computational problem!

Proposition

Let X be a graph whose automorphism group is transitive on
non-edges. Then either the core of X is a complete graph, or X is itself
a core.
However, deciding which possibility occurs is hard . . .



The hull of a graph

The hull of a graph X is defined as follows:
I hull(X) has the same vertex set as X;
I v ∼ w in hull(X) if and only if there is no element

f ∈ End(X) with vf = wf .

Theorem

I X is a spanning subgraph of hull(X) (this means that they have
the same vertex set, and every edge of X is an edge of hull(X));

I End(X) ≤ End(hull(X)) and Aut(X) ≤ Aut(hull(X)) (End
and Aut are the endomorphism semigroup and automorphism
group respectively);

I if core(X) has m vertices then core(hull(X)) is the complete
graph on m vertices.
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No homomorphism can identify x and y, so they are joined in
the hull.

Note the increase in symmetry: |Aut(X)| = 2 but
|Aut(hull(X))| = 8.
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Proof of the theorem

Let X be non-edge transitive. Then hull(X) consists of X with
some orbits on non-edges changed to edges. So there are only
two possibilities:

I hull(X) = X. Then core(X) = core(hull(X)) is complete;
I hull(X) is the complete graph on the vertex set of X. Then

core(X) has as many vertices as X, so that core(X) = X.
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2-closure

The classes of synchronizing and separating group are
upward-closed. They have some downward closure properties
too.

The 2-closure of a permutation group G on V consists of all the
permutations of V which preserve every G-orbit on V ×V.

Proposition

A permutation group is synchronizing (resp. separating) if and only
if its 2-closure is synchronizing (resp. separating).

This is because failure of these properties is “detected” by a
graph admitting the group (and hence admitting its 2-closure).
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More general closure properties

This is based on an idea of Arnold and Steinberg.

Let F be a field, and G a permutation group on V. The F-closure
of G consists of all permutations of V which preserve all the
FG-submodules of the permutation module FV.

It is easy to see that C-closure is equivalent to 2-closure.

Proposition

For any field F, a permutation group is synchronizing (resp.
separating) if and only if its F-closure is synchronizing (resp.
separating).
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An example

The group PSL(2, 2n) has permutation actions of degrees
2n−1(2n ± 1), on the cosets of its maximal dihedral subgroups of
orders 2(2n ∓ 1). It is 2-closed in both actions.

Suppose that 2n − 1 is a Mersenne prime.

The permutation character of the action of degree 2n−1(2n − 1)
is the sum of the trivial character and a family of algebraically
conjugate characters, whose sum is Q-irreducible. So the
Q-closure is the symmetric group, which is trivially separating;
so the original group is separating, and hence synchronizing.
(This was the example of Arnold and Steinberg.)

More generally, a QI-group (one whose permutation character
is the sum of the trivial character and a rational irreducible) is
separating.
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Another example

We take the same group PSL(2, 2n), with 2n − 1 a Mersenne
prime, and consider the other action described earlier.
The permutation character of the action of degree 2n−1(2n + 1)
is equal to the above character plus an irreducible of degree 2n.
So its Q-closure is the group S2n+1 acting on 2-sets.

The only invariant graphs are the line graph of K2n+1 and its
complement; and if X = L(K2n+1), then ω(X) = 2n, but
α(X) = 2n−1.

So again, the original group is separating, and hence
synchronizing.
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