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Derangements

A derangement is a permutation with no fixed points.
Dante Alighieri, in the “Inferno” section of the Divine Comedy,
wrote:

For [Luck] your science finds no measuring-rods; . . .
Her permutations never know truce nor pause

Perhaps we should interpret the first line as meaning “there
cannot be a theory of probability”, and the second as meaning
“a random permutation is a derangement”.



If the latter, then he was wrong, although prescient in asking
the question:

Theorem
The number of derangements of n points is the integer nearest to
n!/e.
In other words, the probability that a random permutation is a
derangement is very close to 1/e = 0.367879441 . . .



Mathematics for the masses

This problem is taken from the puzzle page of METRO, 20
December 2000. First the following question was posed.

Match each of these languages to where they are spoken:

1. Amharic A. Brazil
2. Farsi B. Ethiopia
3. Portuguese C. India
4. Telegu D. Iran
5. Urdu E. Pakistan



The paper then asked:

If the options for this puzzle were given in an entirely
random order, how many of the five pairs of answers would
line up correctly in the same row, averaged over many
puzzles? What about if there were ten options in each
column?

Let’s add another part. Suppose that one particular order is
chosen, and the options were given by starting in a random
position and then following the given order cyclically. What is
the number of correct pairs on average?



The Orbit-Counting Lemma

Let G be a permutation group on a finite set X. For g ∈ G, let
fix(g) be the number of points of X fixed by g.

Theorem
The number of orbits of G in X is

1
|G| ∑

g∈G
fix(g).

In other words, if we choose a random element of G (from the
uniform distribution), its expected number of fixed points is
equal to the number of orbits of G, and so is 1 if G is transitive.
This solves the second METRO puzzle.



On a theorem of Jordan

J.-P. Serre, On a theorem of Jordan, Bull. Amer. Math. Soc. 40
(2003), 429–440.

Theorem (Jordan, 1872)

A transitive permutation group on a set of size n > 1 contains a
derangement.
For the average number of fixed points is 1, and the identity
fixes more than one . . .
My fifteen minutes of fame:

Theorem (Cameron and Cohen, 1992)

In a transitive permutation group on a set of size n > 1, the
proportion of derangements is at least 1/n.



Proof

∑ 1 = |G|,

∑ fix(g) = |G|,

∑ fix(g)2 ≥ 2|G|.

So

∑(fix(g)− 1)(fix(g)− n) ≥ (2− (n + 1) + n)|G| = |G|.

In this sum, derangements contribute n, all other elements have
non-positive contribution.

The theorem is best possible.



Applications

See Serre’s paper for a number of applications in number
theory and topology. For example:

I Let f be an integer polynomial of degree n > 1, irreducible
over Q. Then f has no roots mod p for infinitely many
primes p (indeed, for at least a proportion 1/n of all
primes).

I Let π : T → S be a covering map of degree n ≥ 2, and
suppose that T is arcwise connected but not empty. Then
there is a continuous closed curve in S which cannot be
lifted to T.



Prime power order

Jordan’s Theorem tells us that a transitive group of degree
n > 1 contains a derangement.

Theorem (Fein–Kantor–Schacher)

A transitive group of degree n > 1 contains a derangement of
prime-power order.
The proof uses the Classification of Finite Simple Groups,
together with detailed analysis of the various families of simple
groups. More on this later . . .
Moreover, this theorem is equivalent to the statement:

Theorem (Fein–Kantor–Schacher)

The relative Brauer group of a finite extension of global fields is
infinite.



Which prime?

Conjecture

For any prime p, here is a function fp such that, if n = pa · b with p - b
and a ≥ f (b), then a transitive group G of degree n contains a
fixed-point-free p-element.
This conjecture was made (for p = 2) by Isbell in the early 1960s
in connection with game theory (in the von
Neumann–Morgenstern sense). He showed that there is a
simple n-player game which is fair (no player has an advantage
over the others) if and only if there is a transitive group of
degree n containing no fixed-point-free 2-element.
The conjecture is still open.



A possible approach?

The conjecture is not typical of permutation group problems, in
that there is no simple reduction to the case of primitive groups
(unlike the Fein–Kantor–Schacher theorem).
It would follow from the truth of the following statement:

For any prime p, there is a function gp such that a p-group
with b orbits each of size at least pgp(b) has a fixed-point-free
element.

However, this statement is false for p ≥ 5: Crestani and Spiga
constructed a pro-p group which can be “cut off” at infinitely
many levels to give counterexamples.



An example

Example

There is a constant αk > 0 so that the proportion of
derangements in Sn acting on k-sets tends to αk as n→ ∞. (For
example, α1 = e−1 = 0.3679 . . . , while
α2 = 2e−3/2 = 0.4463 . . . .)
There is a formula for αk as a sum over subsets of the partitions
of k. But most of the terms cancel, so I suspect there is a much
simpler formula!

Problem
Is it true that αk → 1 monotonically as k→ ∞?
Persi Diaconis et al. have some recent results relevant to this.



A shift theorem

Let G be a permutation group on X.
Let PG(x) be the probability generating function for fixed
points: the coefficient of xd is the probability that a random
element of G has exactly d fixed points.
Let QG(x) be the exponential generating function for orbits on
d-tuples of distinct elements: the coefficient of xd is the number
of such orbits divided by d!.
A simple application of the Orbit-Counting Lemma gives

Theorem
QG(x) = PG(x + 1).
In particular, the proportion of derangements is
PG(0) = QG(−1).
For the symmetric group, QG(x) is the truncated exponential
series, so PG(0) is very close to e−1.



A puzzle

What happens for infinite permutation groups?
It may be difficult to give a meaning to “the probability that a
random element has d fixed points”: there may be elements
with infinitely many fixed points, and G may have no natural
probability measure (it may fail to be locally compact).
However, QG(x) makes sense (at least as a formal power series)
in the case of oligomorphic permutation groups, those which
have only finitely many orbits on d-tuples of distinct elements
for all d.
For such groups it may be possible to give a meaning to
QG(−1); can we make sense of it as the “probability of a
derangement”?



Examples
I If G is the symmetric group on an infinite set, then there is

just one orbit on d-tuples of distinct elements for all d. So
QG(x) = ex, and QG(−1) = e−1. This seems reasonable if
we regard G as a limit of finite symmetric groups . . .

I Let G be the group of order-preserving permutations of the
rational numbers. Then G has d! orbits on d-tuples
(corresponding to the possible orderings), and
QG(x) = ∑ xd = 1/(1− x). Thus QG(−1) = 1/2: recall
Euler’s equation

1− 1 + 1− 1 + · · · = 1
2 .

Is there a sense in which half the elements of this group are
derangements? There is no sequence of finite groups with
limit G.

I Let G be the group of permutations preserving the cyclic
ordering of the complex roots of unity. Then
QG(x) = log(1− x), and QG(−1) = log 2.



In the previous cases, either QG(x) converges at x = −1, or the
value there can be obtained by analytic continuation. But this is
by no means typical.

I Let G be the infinite symmetric group acting on the set of
2-element subsets of its natural domain. Then QG(x)
diverges for all x 6= 0. However, QG(x) is a different sort of
limit. Let G(m) denote the symmetric group of degree m
acting on 2-sets. Then the coefficient of xn in QG(m)(x) is
constant for m > 2n, and equals the coefficient in QG(x); so
we have a very strong form of coefficient-wise
convergence. And QG(m)(−1) tends to the limit 2e−3/2 as
m→ ∞.

These examples are not typical of oligomorphic groups, but in
general we have no way to establish a “value” for QG(−1).



Finding a derangement

Given a permutation group G on n points (e.g. by a set of
generating permutations), how do we go about finding a
derangement in G? Of course, G may be bigger than
exponential in n.
In general, it is known that even the question of existence of a
derangement is NP-complete (even if G is an elementary
abelian 2-group).
However, if G is transitive (which we can easily check), then we
know by Jordan’s theorem that the answer to the existence
question is “yes”. The problem of finding one remains.



A randomized algorithm

Let G be transitive.
We can pre-process the generators for G to get a strong
generating set, using which we can choose a sequence of
independent random elements of G. Each one has probability
at least 1/n of being a derangement; so by choosing about n2

random elements, the probability of not obtaining a
derangement is at most (1− 1/n)n2 ≈ e−n. So we will succeed
very quickly.
Can this algorithm be derandomized?



First approach

Emil Vaughan pointed out that the method of Fein, Kantor and
Schacher is constructive, and can be implemented in
polynomial time – so we can even find a derangement of prime
power order.
However, it is not straightforward, and requires CFSG to prove
its correctness.
By passing to a normal subgroup, and to the action on a system
of blocks of imprimitivity, we can assume that G is a simple
group, and the point stabiliser is a maximal subgroup H. We
need to find a conjugacy class of elements (of prime power
order) lying outside H. For this we have to identify the natural
action of G, and then choose appropriate elements there.
For example, if G is PSL(n, q), then the class of transvections
avoids most of the maximal subgroups, while irreducible cycles
of order a primitive divisor of qn − 1 handle the rest.



Second approach

This year, I received a preprint from Vikraman Arvind in
Chennai, in which there is a beautifully simple deterministic
algorithm for finding a derangement.
Recall the puzzle about matching languages to countries. If we
start with a fixed ordering and then permute it by a random
cyclic permutation, how many pairs are correct (on average)?
The answer is 1, but strictly this requires a generalisation of the
Orbit-Counting Lemma.

Theorem
Let G be a transitive permutation group of degree n. Then the average
number of fixed points of the elements in any coset of G (in the
symmetric group) is equal to 1.



If G is not transitive, there is no formula for the average
number of fixed points of the elements of a coset, but it can be
computed in polynomial time, as follows.
Consider the coset Gh, for h ∈ Sn. Count pairs (x, g), with x ∈ X
and g ∈ G, such that xgh = x. This is |G| times the average we
are trying to compute.
This sum can be computed another way. We require xg = xh−1.
If x and xh−1 lie in different G-orbits, there are no such pairs;
otherwise, the set of possible g is a coset of the stabiliser of x,
and so the number is |G| divided by the orbit size.
So the algorithm is: for x ∈ X, check whether x and xh−1 lie in
the same G-orbit: if so, add in the reciprocal of the size of this
orbit. The final total is the required average.
In particular, if G is transitive, we sum 1/n for all n points of X,
obtaining the answer 1.



The algorithm works as follows. We start with a permutation
group G, and assume we also have a base, a sequence
(x1, x2, . . . , xb) of points of X whose (pointwise) stabiliser is the
identity.
We begin with the coset G, in which the average number of
fixed points is 1.
If we are in a coset Gihi, where Gi is the stabiliser of (x1, . . . , xi),
then we split it into cosets of Gi+1, and choose one where the
average number of fixed points is at most the average in the
original coset Gihi.

Cosets of Gi+1 in Gihi
Average number of
fixed points = a6

Coset with average ≤ a



At the first stage, we can assume that the average is strictly less
than 1, since the coset G1 has average greater than 1 – it is an
intransitive group.
At each subsequent stage, the average decreases (perhaps not
strictly).
At the last stage, our coset is a single element whose number of
fixed points is strictly less than 1, i.e. a derangement.

Problem
Is there an “elementary” algorithm (not requiring CFSG to prove its
correctness) to find a derangement of prime power order?
Another open problem is:

Problem
What is the complexity for the problem of counting the number of
derangements in a transitive group?
It is known that this number can be efficiently approximated.
For not necessarily transitive groups, the problem is
#P-complete.


