
Acyclic orientations and poly-Bernoulli
numbers

pjc, csg 13/12/2013

(with Celia Glass and Robert Schumacher)

This talk reported on a serendipitous discovery that the number of acyclic
orientations of a complete bipartite graph is a poly-Bernoulli number, as
defined by Masanobu Kaneka in 1997.

1 Acyclic orientations

In these notes, G will be a graph with n vertices and m edges; the vertex
and edge sets are V and E respectively. All graphs are simple.

An acyclic orientation of a graph is an orientation of the edges of the
graph such that there are no directed cycles. I will often abbreviate “acyclic
orientation” to a.o.

Any acyclic orientation can be obtained by ordering the vertices and then
orienting all edges from the smaller to the greater vertex.

Any acyclic orientation gives rise to a colouring, where the colour given
to a vertex is the length of the longest directed path ending at the vertex.
Depending on the a.o. chosen, this might be anything from the chromatic
number of the graph up to the length of the longest path. It would be
interesting to know something about the distribution of the number of colours
over all a.o.s of a given graph.

Define the distance between two a.o.s of G to be the number of edges
oriented differently in the two a.o.s. It is not hard to show that any a.o. has
an edge whose orientation can be flipped while preserving the a.o. property.
Even stronger, we can transform any a.o. into any other by flipping just
those edges which are oriented differently, so the distance is equal to the
minimum number of edge flips required to transform one into the other.
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The edge flips define a Markov chain on the set of a.o.s of G: choose a
random edge and flip it if possible. It would be nice to modify this Markov
chain so as to bias it towards a.o.s which give rise to colourings with few
colours, but we have not succeeded in doing this.

2 Counting a.o.s

The number of a.o.s of a given graph is an interesting graph parameter.
Stanley showed that it is equal to (−1)nPG(−1), where PG is the chromatic
polynomial of G. So it is an evaluation of the Tutte polynomial. It is hard
to compute exactly, and it is currently unknown whether there is an efficient
approximation procedure (fpras) for it.

We’d like to understand the distribution of the number of a.o.s of labelled
graphs with n vertices and m edges. The average number can be computed
from a theorem of Bender, Richmond, Robinson and Wormald. Let a(n,m)
be the number of labelled acyclic digraphs with n vertices and m arcs, and

An(x) the generating polynomial
n(n−1)/2∑

m=0

a(n,m)xm. The theorem states:

An(x) =
n∑

i=1

(−1)i+1

(
n

i

)
(1 + x)i(n−i)An−i(x).

From this recurrence it is straightforward to calculate an,m. Now the required

average is obtained by dividing this number by the number

(
n(n− 1)/2

m

)
of

labelled graphs with n vertices and m edges. The results (rounded to the
nearest integer) for various values of n and m form the middle row of the
following table:

The graphs with the minimum number of a.o.s were described by me,
Celia Glass and Robert Schumacher. They are obtained, for given n and m,
by the following procedure. Make the largest possible complete graph (say
Kq) from the given m edges; use the remaining r = m− q(q − 1)/2 edges to
join one further vertex to r vertices of this complete graph. The number of
a.o.s of the resulting graph is q!(r+1). Note that this function grows linearly
between successive triangular numbers. The numbers form the top row of
the table.

The maximum presents much greater difficulties, and we have little proved
about this. However, we have a conjecture. A Turán graph is a complete
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vertices 2 4 6 8 10 12
edges 1 4 9 16 25 36

Min # a.o.s 2 12 96 1440 25200 362880
Ave # a.o.s 2 12 167 3851 156636 9312017

Max # a.o.s? 2 14 230 6902 329462 22934774

Table 1: Numbers of acyclic orientations of graphs with m = n2/4

multipartite graph with the parts of nearly equal sizes (i.e., differing by at
most one). In other words, we remove from the complete graph the edges of
a collection of disjoint complete graphs of nearly equal sizes covering all the
vertices.

Conjecture: If n and m are such that a Turán graph exists, then it max-
imises the number of a.o.s.

This is known only in the case where the number of edges is so large that
the complete graphs have sizes 1 and 2 (i.e., removing at most n/2 edges
from Kn, the best way is to remove pairwise disjoint edges).

For even n, the complete bipartite graph Kn,n is a Turán graph. Rob
computed the number of a.o.s for small n, checked in the On-Line Encyclo-
pedia of Integer Sequences, and found the sequence listed in the bottom row
of the table. The references led him to papers on poly-Bernoulli numbers.

3 Poly-Bernoulli numbers

This is only a very brief introduction.
Kaneko gave the following definitions. Let

Lik(z) =
∞∑

m=1

zm

mk
,

and let
Lik(1 − e−x)

1 − e−x
=
∞∑
n=0

B(k)
n

xn

n!
.

The numbers B(k)
n are the poly-Bernoulli numbers of order k.
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He gave a couple of nice formulae for the poly-Bernoulli numbers of neg-
ative order, of which the following is relevant here:

B(−k)
n =

min(n,k)∑
j=0

(j!)2S(n + 1, j + 1)S(k + 1, j + 1),

where S(m, p) is the Stirling number of the second kind, the number of par-
titions of a set of cardinality m with p parts.

This formula has the (entirely non-obvious) corollary that these numbers

have a symmetry property: B(−k)
n = B

(−n)
k for all non-negative integers n and

k.

4 Connection

We showed that the number of acyclic orientations of the complete bipartite
graph Kn1,n2 is the poly-Bernoulli number B(−n2)

n1
.

Here is the proof.
Let the bipartition of the vertex set of the graph have parts A and B,

which we think of as coloured amber and blue. Any acyclic orientation is
defined by a sequence (A1, B1, . . . , Ak, Bk), where the Ai form a partition of
A and the Bi of B, where all parts are non-empty except possibly A1 and Bk.
To get round having to consider four cases, we add a new vertex a0 to A1

and a new vertex b0 to Bk. So we get an acyclic orientation by first choosing
partitions (which can be done in S(n1 + 1, k)S(n2 + 1, k) ways), ordering
them with A1 first and Bk last (in ((k − 1)!)2 ways), and then removing the
added vertices a0 and b0. Finally, sum over k. The result is

min(n1,n2)+1∑
k=1

((k − 1)!)2S(n1 + 1, k)S(n2 + 1, k),

which is clearly the same as Kaneko’s formula.
In a more recent paper, Chad Brewbaker gave another counting inter-

pretation of these numbers. He defines a lonesum matrix to be a zero-one
matrix which is uniquely determined by its row and column sums. Ryser
showed that a binary matrix is lonesum if and only if it does not contain(

1 0
0 1

)
or
(

0 1
1 0

)
as a submatrix (in not necessarily consecutive rows or
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columns). (If one such submatrix occurred it could be flipped into the other
without changing the row and column sums.)

Now the number of n1 × n2 lonesum matrices is equal to the number of
a.o.s of Kn1,n2 . There is a simple proof of this. Number the vertices in the
bipartite blocks from 1 to n1 (in A) and from 1 to n2 (in B). Now given an
orientation of the graph, we can describe it by a matrix whose (i, j) entry is
1 if the edge from vertex i of A to vertex j of B goes in the direction from A
to B, and 0 otherwise. The two forbidden submatrices for lonesum matrices
correspond to direceted 4-cycles; so any a.o. gives us a lonesum matrix.

To see the converse, we claim that if an orientation of a complete bipartite
graph contains no directed 4-cycles, then it contains no directed cycles at all.
For suppose that there are no directed 4-cycles, but there is a directed cycle
(a1, b1, a2, b2, . . . , ak, bk, a1). Then the edge between a2 and b2 must be di-
rected from a1 to b2, since otherwise there would be a 4-cycle (a1, b1, a2, b2, a1).
But then we have a shorter directed cycle (a1, b2, a3, . . . , bk, a1). Continuing
this shortening process, we would eventually arrive at a directed 4-cycle, a
contradiction.

(This says that the cycle space of the complete bipartite graph is gener-
ated by 4-cycles.)
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