
Algorithmic aspects of synchronization

Peter J. Cameron

Queen Mary Algorithms Day, February 2013

The dungeon

You are in a dungeon consisting of a number of rooms.
Passages are marked with coloured arrows. Each room
contains a special door; in one room, the door leads to freedom,
but in all the others, to instant death. You have a schematic
map of the dungeon, but you do not know where you are.

←

←

�
�

�
�

�
�

�
�

�
�

��

↗
.

..

...

...

..

..

......................................

......................................

..

..

...

...

..

↘

↓

↑
.

..

...

...

..

..

......................................

......................................

..

..

...

...

..

↖
↘

u u

u u1 2

34

You can check that (Blue, Red, Blue, Blue) takes you to room 3
no matter where you start.

Definitions

A (finite deterministic) automaton consists of a finite set Ω of
states, with a finite set S of transitions, maps from Ω to Ω.
The automaton is synchronizing if there is a word in the
transitions which evaluates to a map of rank 1.
Combinatorially, an automaton is an edge-coloured directed
graph on Ω such that every vertex is the source of a unique arc
of each colour.
Algebraically, since we are interested in composing maps, an
automaton is a transformation monoid on Ω (a set of
transformations closed under composition and containing the
identity map) with a prescribed set S of generators.

Another example

This example arises in industrial robotics.

u

u
u u

1

2

3

4

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

↙

↘ ↗

↖

.
.........................

........................

.......................
......................

......................
.......................

........................
.........................↙

...
................

...
........
...........
.............
................

.
..

B R R R B R R R B
1 2 3 4 1 2 3 4 1 2
2 2 3 4 1 2 3 4 1 2
3 3 4 1 2 2 3 4 1 2
4 4 1 2 3 3 4 1 2 2

So BRRRBRRRB is a reset word.

Problems

Problem (The Černý conjecture)

If an n-state automaton is synchronizing, then it has a reset word of
length at most (n− 1)2.
This problem is still open after nearly fifty years. The example
on the previous slide and the obvious generalisation show that,
if true, it is best possible.
Two related computational problems. Given an automaton
(Ω, S),

I Decide whether it is synchronizing.
I If so, find the shortest reset word.

Testing synchronization

Proposition

An automaton (Ω, S) is synchronizing if and only if, for any two
states a, b ∈ Ω, there is a word wa,b in the elements of S which maps a
and b to the same place.

Proof.
“Only if” is clear, so suppose that the condition holds. Let f be
an element of 〈S〉 of smallest possible rank. If the rank of S is
greater than 1, then choose two points a, b in the image; then
fwab has smaller rank than f . So f has rank 1, and the automaton
is synchronizing.
So we only have to consider all pairs of states.

The picture shows the previous example, extended to pairs of
states.

u

u
u u

1

2

3

4

u

u

u

u

u

u
12 14

23 34

13 24

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

↙

↘ ↗

↖
↓

→

↑

←

↔

.
.........................

........................

.......................
......................

......................
.......................

........................
.........................↙

↑

...
................

...
........
...........
.............
................

.
..

�������������

←

...
................

.
.................
.

...
.........
...........
..............
................

..................

.
..

.
...............................

....
............................

....
..........................

....
........................

...
.....................

...
....................

..
...................

.
..................

...................
.

....................
..

.....................
...

........................
...

..........................
....

............................
....

...............................
....

↓

Now it suffices to check that there is a path from any vertex on
the right to some vertex on the left; this can clearly be done in
polynomial time.

Shortest reset word

In order to find the shortest reset word by this method, we
would have to extend the diagram to all possible sets of states,
and then find the shortest path from Ω to a singleton; the size
of the resulting digraph would be exponentially large.
In fact:

Theorem
Deciding whether an automaton is synchronizing is in P, but finding
the length of the shortest reset word is NP-hard.
The above argument gives us a cubic upper bound for the
length of a reset word. For we can collapse a given pair of

states in at most
(

n
2

)
steps, and we only need to do this n− 1

times to reset the automaton.

Graph endomorphisms

There is a test for synchronization which is not computationally
efficient but of very great theoretical value.
An endomorphism of a graph is a map on the vertex set of the
graph which maps edges to edges; we do not care what it does
to non-edges.

Theorem
A transformation semigroup is not synchronizing if and only if it is
contained in the endomorphism monoid of a non-null simple graph
with clique number equal to chromatic number.
To prove sufficiency note that an endomorphism of a non-null
graph cannot map an edge to a single vertex.

For necessity, suppose we are given a transformation
semigroup S on Ω. let the graph X be defined by the rule that
vertices v and w of Ω are adjacent if there is no map s ∈ S
which maps v and w to the same place.
A short argument shows that every element of S is an
endomorphism of X. If S is not synchronizing then not every
pair of points can be collapsed, so the graph is non-null. If s is
an element of minimal rank in S, then the image of S is a clique
and the map s is a colouring.

Permutation groups

Let G be a permutation group on Ω, a subgroup of the
symmetric group on Ω.
The group G is

I transitive if any element of Ω can be mapped by any other
by some element of G, that is, there is no non-trivial
G-invariant subset of Ω;

I primitive if there is no non-trivial equivalence relation on
Ω;

I 2-transitive if it acts transitively on the set of pairs of
distinct elements of Ω, that is, there is no non-trivial binary
relation on Ω.

A set or relation is trivial if it is invariant under the symmetric
group.

Synchronizing groups

There is a lot of interest in semigroups generated by a
permutation group together with one non-permutation.
By abuse of language, we call the group G synchronizing if, for
any non-permutation s, the semigroup 〈G, s〉 contains an
element of rank 1.
Now the main question is:

Question
Which permutation groups are synchronizing?

Synchronizing groups, 2

Theorem
A permutation group G on Ω is non-synchronizing if and only if
there is a non-trivial G-invariant graph on the vertex set Ω with
clique number equal to chromatic number.
The forward implication is immediate from the preceding
theorem. Conversely, if X is a G-invariant graph with clique
number and chromatic number r > 1, and s is an r-colouring of
X with values in an r-clique, then s is an endomorphism of X,
and so 〈G, s〉 ≤ End(X).

Synchronizing groups, 3

It follows immediately from the theorem that a 2-transitive
group is synchronizing (since it preserves no non-trivial graph
at all), and a synchronizing group is primitive (since an
imprimitive group preserves a complete multipartite graph).
Neither implication reverses.
Using the Classification of Finite Simple Groups, we know
quite a lot about primitive groups. Can we use this knowledge
to find efficient algorithms for testing synchronization?

An algorithm

Given a permutation group G on Ω, is it synchronizing?
Both primitivity and 2-transitivity can be tested in polynomial
time, so we may assume that G is primitive but not 2-transitive.

I Compute the non-trivial G-invariant graphs. There are
2r − 2 of these, where r is the number of G-orbits on 2-sets.
This is potentially exponentially large, but for many
interesting groups r is much smaller than n.

I For each such graph, check whether clique number is
equal to chromatic number. If we find one, G is
non-synchronizing; otherwise it is synchronizing. Of
course, clique number and chromatic number are hard in
general, but we have highly symmetric graphs here, which
shortens the calculation.

Chromatic number of symmetric graphs

Existing software such as Grape will find the clique number of
a vertex-transitive graph quite fast. Ideally the speed will be
improved by a factor which is almost the order of the
automorphism group (with a small overhead for managing the
group).

Question
How can we best exploit symmetry of a graph to find its chromatic
number more efficiently?

An improvement

In a vertex-transitive graph on n vertices, the product of the
clique number and the independence number is at most n.
Thus, if clique number equals chromatic number, then equality
holds in the above bound, and all colour classes are
independent sets of maximum size.
So we can modify the preceding algorithm as follows: first test
one of each complementary pair of graphs to see whether the
product of clique number and independence number is n. If
not, then clique number and chromatic number cannot be
equal.
Only for graphs failing this test do we need to compute
chromatic number.

Are primitive groups close to synchronizing?

We saw that synchronizing groups are primitive, but not
conversely. Of course, if there were only a few primitive
non-synchronizing groups, and we could recognise them
quickly, we would have a good test for synchronization.
There are a couple of other directions in which it seems that the
two properties are close.
João Araújo has conjectured that, if G is primitive, and s is a
map which is not uniform (that is, not all its kernel classes have
the same size), then 〈G, s〉 contains an element of rank 1.

Non-synchronizing ranks

Define a non-synchronizing rank of G to be a number r for which
there is a map of rank r not synchronized by G. Let NS(G) be
the set of non-synchronizing ranks.
It is known that, if G is imprimitive, then NS(G) is large (at
least (3

4 − o(1))), and conjectured that, if G is primitive, then
NS(G) is small (maybe only O(log n). There is a strengthening
of “primitive” known as “basic”, and it is conjectured that the
size of NS(G) for basic groups G is even smaller.

