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“I count a lot of things that there’s no need to count,” Cameron
said. “Just because that’s the way I am. But I count all the
things that need to be counted.”

Richard Brautigan, The Hawkline Monster: A Gothic Western



Outline

Every graph theorist knows that the colorings of a graph with a
given number of colorings are counted by a certain polynomial,
the chromatic polynomial of the graph.
But there is more to it. I will describe three problems to which
polynomials provide the answer, and a fourth to which the
answer is not yet known.
If time permits, I will consider some generalisations where we
don’t yet know what to do.
Warning: There will be graphs and groups. A typical group
will be called G, so a typical graph has to be something else; I
will use X.



I will illustrate with the Petersen graph:
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Graph coloring



Graph coloring

A graph, then, is something like the above picture; it has
vertices and edges, each edge joining two distinct vertices and
not having a direction, and no multiple edges (so each pair of
vertices is either joined or not).
A proper coloring of the graph X with q colors is an assignment
of the colors to the vertices in such a way that vertices joined by
an edge receive different colors.

Theorem
There is a polynomial PX with the property that, for any positive
integer q, the number of proper colorings of X with q colors is PX(q).



Inclusion–Exclusion

This theorem is usually proved by deletion and contraction.
Here is a proof using Inclusion–Exclusion.
The Principle of Inclusion and Exclusion, or PIE for short,
states:

Theorem
Let T1, . . . , Tn be subsets of a set S. For any subset J of {1, . . . , n}, let
TJ be the intersection of the sets Ti for i ∈ J, with T∅ = S. Then the
number of elements lying in none of the sets Ti is given by

∑
J⊆{1,...,n}

(−1)|J||TJ|.

The idea is that we count all the elements of T∅ = S, remove
the elements that lie in some set Ti, put back in the ones which
have been removed twice, . . .



Colorings

Counting proper colorings is a job for this principle. We take
the set of all possible colorings, proper or not, of the graph with
q colors; there are qn of these, where n is the number of vertices.
Now we have to exclude the ones that have bad edges, joining
vertices of the same color. How many colorings have at least a
set A of bad edges? To count them, look at the subgraph with
edge set A. By assumption, all vertices in a connected
component of this graph have the same color. So, if c(A) is the
number of connected components of this subgraph, there are
qc(A) such colorings. Then PIE gives the number of colorings
with no bad edges as

PX(q) = ∑
A⊆E

(−1)|A|qc(A).

This is the chromatic polynomial of X.



The Petersen graph

For the Petersen graph, the chromatic polynomial is

PX(q) = q(q− 1)(q− 2)×
(q7 − 12q6 + 67q5 − 230q4 + 529q3 − 814q2 + 775q− 352).

We see that the least number of colors required for a proper
coloring (the smallest q for which this is non-zero) is 3, and the
number of proper colorings for q up to 10 is given in the
following table:

q 3 4 5 6 7 8 9 10
PX(q) 120 12960 332880 3868080 27767880 144278400 594347040 2055598560



Variations



Up to order of colors

Often it does not matter which colors are assigned to which
vertices; only the partition of vertices into color classes is
important. Each color class is an independent set, a set
containing no edges; so we want to count partitions into
independent sets.
We can’t just divide the numbers in the preceding table by q!
[WHY?]
First we have to count the colorings in which every color
actually appears.



This is once again a job for PIE. Let S be the set of all colorings
with q colors, and for each i let Ti be the set of colorings in
which color i does not appear. We want to count colorings lying
in none of the sets Ti. Defining TJ as in PIE, we see that if
|J| = q− r, then TJ consists of colorings using just r prescribed
colors, so has size PX(r). So, by PIE, the number of colorings
using q colors, all of which actually appear, is

P∗X(q) = ∑
r≤q

(−1)q−r
(

q
r

)
PX(r).

(Note that this is not a polynomial, since it is zero if q > n.)
Dividing this number by q!, we obtain the number of partitions
into q independent sets.



The Petersen graph

For the Petersen graph, the numbers are

q 3 4 5 6 7 8 9 10
P∗X(q)/q! 20 520 2244 2865 1435 315 30 1



Orbit-counting

Return to colorings in the original sense. Perhaps we don’t
want to count two colorings as different if they agree up to
symmetry of the graph, that is, there is a graph automorphism
which takes one to the other. So what we are counting are the
orbits of the symmetry group on the set of colorings.
To get the answer it does not suffice simply to divide the
number of colorings by the number of symmetries. The answer
is given by the Orbit-Counting Lemma:

Theorem
The number of orbits of a finite group G acting on a finite set X is
obtained by counting, for each element g ∈ G, the number of elements
of X which are fixed by g, summing these numbers, and dividing the
result by |G|.



Colorings up to symmetry

Given an automorphism g of a graph X, how many q-colorings
does it fix?
Decompose the permutation g of the vertices into cycles; if a
coloring is fixed, then vertices in the same cycle must get the
same color. So, if any cycle contains an edge, then the number
is zero; otherwise, shrink each cycle to a single vertex and count
colorings of the resulting graph X/g, noting that each can be
extended uniquely to a coloring of the original graph fixed by g.
The result is a polynomial in q called the orbital chromatic
polynomial associated with the graph X and group G, denoted
by OPX,G(q), whose value at a positive integer q is the number
of G-orbits on proper q-colorings of X. Thus we have

OPX,G(q) =
1
|G| ∑

g∈G
PX/g(q),

with the convention that PX/g = 0 if X/g contains a loop.



The Petersen graph

In the above formulation, G can be any group of
automorphisms of X, but to answer the earlier question, we
take it to be the full automorphism group.
To work this out for the Petersen graph, first we have to
understand its automorphisms.
A convenient representation of the Petersen graph is as follows.
The vertices can be labelled with the 2-element subsets of
{1, 2, 3, 4, 5}; two vertices are joined if and only if their labels
are disjoint. It is clear from this description that the symmetric
group S5 acts on the graph, and in fact this is the full
automorphism group.



Now the only automorphisms whose cycles contain no edges
are the identity, 2-cycles, and 3-cycles on {1, 2, 3, 4, 5}. (For
example, the cycle (12, 23, 34, 45, 15) of the permutation
(1, 2, 3, 4, 5) contains an edge from 12 to 34.) There are 10
2-cycles and 20 3-cycles, and the corresponding graphs X/g are
shown:

u u u
u u

u u
�
�
�

�
�
�

@
@
@

@
@
@

u u
u

u
�
�
�

@
@
@



Now doing the calculation, we find that the orbital chromatic
polynomial is

OPX,G(q) = q(q− 1)(q− 2)×
(q7 − 12q6 + 67q5 − 220q4 + 469q3 − 664q2 + 595q− 252)/120.

The values for 3 to 10 colors are

q 3 4 5 6 7 8 9 10
OPX,G(q) 6 208 3624 36654 248234 1254120 5089392 17449788



Combining?

What if we don’t care about the names of the colors, and also
want to count up to symmetry?
The first step of what we did works fine: PIE gives us a formula
for the number of orbits on q-colorings in which all the colors
are used. The numbers for the Petersen graph are

q 3 4 5 6 7 8 9 10
OP∗X,G(q) 6 184 2644 17910 60690 105840 90720 30240

But we cannot simply divide these numbers by q! to get the
number of orbits on partitions. This is because it is possible that
a permutation of the parts of a partition can be realised by
applying a symmetry, so we would be undercounting. Indeed,
the numbers in the table are not all divisible by q!.



I don’t know a mechanical method of finding the number of
orbits of G on partitions of X into q independent sets. This
would be an interesting research problem. In the case of the
Petersen graph, the six orbits with q = 3 are indeed all the same
if permutations of the colors are allowed, so the first entry in
the corresponding table would be 1.



Acyclic orientations
Richard Stanley noticed that, if we substitute −1 into the
chromatic polynomial of the graph, we obtain (up to sign) the
number of acyclic orientations of the graph, that is, the number
of ways of assigning directions to the edges so that no directed
cycle is created.
Unfortunately, substituting −1 into the orbital chromatic
polynomial doesn’t give the number of orbits of G on acyclic
orientations of X; but there is another polynomial, the twisted
orbital chromatic polynomial, which does this job. It is
calculated in the same way as the chromatic polynomial, but
terms corresponding to odd permutations g are given a minus
sign, that is, subtracted rather than added.
This works because the sign of PX(−1) is (−1)n, where n is the
number of vertices of X. So, if the automorphism g has r cycles,
then the sign of the corresponding term in PX,G(−1) is (−1)r,
and the sign of the permutation g is (−1)n−r; so if we multiply
the contribution of each permutation by its sign, the terms add
instead of cancelling.



The Petersen graph

The twisted orbital chromatic polynomial of the Petersen graph
is given by

P∗X,G(q) = q(q− 1)(q− 2)(q− 3)×
(q6 − 9q5 + 40q4 − 120q3 + 229q2 − 277q + 164)/120.

We find that the 16680 acyclic orientations of the Petersen
graph fall into 168 orbits under the automorphism group.
Note that the twisted orbital chromatic polynomial, like the
ordinary chromatic polynomial but unlike the untwisted
orbital version, has no negative real roots.



A problem

A great deal is known about chromatic roots, or roots of
chromatic polynomials of graphs:

I there are no negative real chromatic roots, no roots in
(0, 1), and none in (1, 32

27 ), but they are dense in [ 32
27 , ∞) (Bill

Jackson, Carsten Thomassen);
I chromatic roots are dense in C (Alan Sokal).

Problem
What can be said about orbital chromatic roots (ordinary or twisted)?



Another problem

The α + n conjecture asserts that, for any algebraic integer α,
there exists a natural number n such that α + n is a chromatic
root (and hence so is α + m for all m ≥ n).
This is true for quadratic integers (easy) and for cubic integers
(by Adam Bohn), but is unknown beyond that.

Problem
Investigate algebraic properties of orbital chromatic roots along
similar lines.



Generalizations



Generalizations

The chromatic polynomial of a graph is generalized by the
two-variable Tutte polynomial, which has specialisations
counting many things other than colorings.
The Orbit-Counting Lemma can be systematized by the
multivariable cycle index of a permutation group, which yields
counts for orbits of the group on very general configurations.

Problem
Combine the two approaches, to count orbits of G on graph-theoretic
objects counted by the Tutte polynomial.
I will briefly describe the situation for flows and tensions on a
graph. This is taken from a paper with Bill Jackson and Jason
Rudd.



Tensions and flows

Let A be a finite abelian group. Choose a fixed but arbitrary
orientation of the edges of the graph X.

I A tension on X (over A) is a function from the set of arcs of
X to A with the property that the signed sum of the values
along any circuit is zero.

I A flow on X (over A) is a function from the set of arcs of X
to A with the property that the signed sum of the values on
the arcs through any vertex is zero.

We are interested in the numbers of nowhere-zero tensions and
flows.
Cleary, reversing an arc and changing the sign of the function
there does not affect the property of being a tension or flow; so
the numbers of these are independent of the orientation.



Tensions

It is easy to see that any tension is obtained as follows. Choose
a function Φ from the vertex set of X to A; now put on each arc
the difference between its values at the head and the tail.
Now Φ is a proper coloring of X if and only if the derived
tension is nowhere-zero.
There is one free choice for the value of Φ in each connected
component. So the number of nowhere-zero flows is PX(q)/qc,
where c is the number of connected components of X, and
q = |A|. Note that the number does not depend on the
structure of A, only its order. We call PX(q)/qc the tension
polynomial of X.



Flows

It is often claimed that flows are “dual” to colorings. What they
are really dual to is tensions, as we will see.
Tutte showed that the number of nowhere-zero flows does not
depend on the structure of A, but only on its order; this number
is a polynomial in q = |A|, called the flow polynomial of the
graph X.
For planar graphs, the flow polynomial of a graph is the
tension polynomial of its dual.
There are many interesting unsolved problems about roots of
flow polynomials.



Orbital versions

There are orbital tension and flow polynomials associated with
a graph X and group G of automorphisms of X.
However, unlike the usual polynomials, they are multivariate.
We have variables xi for i = 0 and for each positive integer i for
which there is an element of order i in the group G.
To obtain a count for the number of orbits of G on tensions
and/or flows over an abelian group A, we substitute αi for xi in
the appropriate polynomial, where αi is the number of
solutions of ia = 0 for a ∈ A. Note that α0 = |A| and α1 = 1; so
if G is trivial, the result depends only on |A|, in agreement with
Tutte’s observation.



An example

The Petersen graph is a bit big, so I will consider the following
graph. Edges are directed top-to-bottom, and the letters
indicate the values (in an abelian group A) of the function.
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The group G consists of the identity, the left-to-right reflection
r1, the top-to-bottom reflection r2, and their product.



Orbits on nowhere-zero tensions
Let q = |A| and αi as before.
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I For a tension, we have a + d = b = c + e, so there are
(q− 1)(q− 2)2 non-zero tensions.

I A tension is fixed by r1 if a = c. So there are (q− 1)(q− 2)
such tensions.

I A tension is fixed by r2 if d = −a, e = −c and hence b = 0.
So there are no fixed tensions.

I A tension is fixed by r1r2 if and only if e = −a, d = −c, and
b = −b. So 2b = 0 (α2 choices), then there are q− 2 choices
for a, after which everything is determined. So α2(q− 1)
fixed tensions.

So the orbital tension polynomial is
1
4
(x0 − 1)((x0 − 1)(x0 − 2) + x2).



Orbits on nowhere-zero flows

p pp
p

@@

@@��

��

a
b

c

d e

I For a flow, we have d = a, e = c, and a + b + c = 0. So
(q− 1)(q− 2) choices.

I A flow is fixed by r1 if a = b. So c = −2a and we require
2a 6= 0: q− α2 choices.

I A flow is fixed by r2 if 2a = 2b = 2c = 0. So
(α2 − 1)(α2 − 2) choices.

I A flow is fixed by r1r2 if a + e = c + d = 2b = 0. Then
a + c = 0, so b = 0, and there are no fixed flows.

So the orbital flow polynomial is

1
4
((x0 − 1)(x0 − 2) + (x0 − x2) + (x2 − 1)(x2 − 2)).



Invariant factors and duality, 1

Let R be a principal ideal domain. Given an m× n matrix M
over R, we define the row space of ρ(M) and the null space
ν(M) as usual:

ρ(M) = {yM : y ∈ Rm},
ν(M) = {x ∈ Rn : Mx> = 0}.

M can be put into Smith normal form by elementary row and
column operations: this is a matrix with r non-zero diagonal
elements d1, . . . , dr and all other entries zero, where di divides
di+1 for i = 1, . . . , r− 1. The elements d1, . . . , dr are uniquely
determined up to multiplication by units of R. They are the
invariant factors of M. By convention, we also take 0 to be an
invariant factor with multiplicity n− r, so that there are n
invariant factors in all.



Invariant factors and duality, 2

Two matrices M and M∗ over the PID R are dual if the row
space of M is equal to the null space of M∗ and vice versa.

A matrix is totally unimodular if every subdeterminant is zero or
a unit. (This property is not preserved by elementary
operations.)

Theorem
Let M be a matrix over R. Then the following are equivalent:

I M has a dual;
I all invariant factors of M are zero or units;
I M is equivalent (by elementary row and column operations) to a

totally unimodular matrix.

If Γ is a graph with oriented edges, and M and M∗ are its signed
vertex-edge and cycle-edge incidence matrices, then M and M∗

are dual.



Orbital Tutte polynomial, 1

Assume that (M, M∗) is a dual pair over a principal ideal
domain R. The linearly independent sets of columns of M are
the independent sets of a matroid. The linearly independent
sets of columns of M∗ form the dual matroid.

An automorphism of M to be an automorphism of the free
module Rn (where n is the number of columns of M) which
preserves the row space and null space of M.

If g is an automorphism of M (represented as an n× n matrix),
and 1 is the identity matrix, set

Mg =

(
M

g− 1

)
, M∗g =

(
M∗

g− 1

)
.

For any subset S of E = {1, . . . , n}, and any matrix N with n
columns, we let N[S] be the submatrix of N consisting of the
columns with indices in S.



Orbital Tutte polynomial, 2

Take two sets (xi : i ∈ I) and (x∗i : i ∈ I) of indeterminates,
where the index set I is the set of associate classes in R. For any
matrix N, let x(N) be the monomial defined as follows: take the
invariant factors of N (completed with zeros so that the number
of them is equal to the number of columns of N), and multiply
the corresponding indeterminates. Define x∗(N) similarly,
using the other set of indeterminates.

Now let G be a finite group of automorphisms of M, and define
the orbital Tutte polynomial OT(M, G) in the indeterminates
(xi, x∗i : i ∈ I) as follows:

OT(M, G) =
1
|G| ∑

g∈G
∑

S⊆E
x(Mg[S])x∗(M∗g [E \ S]).



Specialisations

Theorem
If G is the trivial group, then OT(M, G) involves only x0, x1, x∗0 and
x∗1 ; the substitution x1 = x∗1 = 1, x0 = y− 1, x∗0 = x− 1 gives the
Tutte polynomial of M.

Theorem
If M and M∗ are the vertex-edge and cycle-edge incidence matrices of
a graph X, and G a group of automorphisms of X, then the
substitution xi = αi(A), x∗i = −1 (for all i) in OT(X, G) gives the
number of G-orbits on nowhere-zero A-flows on X, while the
substitution xi = −1, x∗i = αi(A) gives the number of G-orbits on
nowhere-zero A-tensions on X.


