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Happy Birthday, MSG!!

and many happy returns . . .



Hadamard’s theorem

Let H be an n× n matrix, all of whose entries are at most 1 in
modulus. How large can det(H) be?
Now det(H) is equal to the volume of the n-dimensional
parallelepiped spanned by the rows of H. By assumption, each
row has Euclidean length at most n1/2, so that det(H) ≤ nn/2;
equality holds if and only if

I every entry of H is ±1;
I the rows of H are orthogonal, that is, HH> = nI.

A matrix attaining the bound is a Hadamard matrix.
This is a nice example of a continuous problem whose solution
brings us into discrete mathematics.



Remarks

I HH> = nI⇒ H−1 = n−1H> ⇒ H>H = nI, so a Hadamard
matrix also has orthogonal columns.

I Changing signs of rows or columns, permuting rows or
columns, or transposing preserve the Hadamard property.

Examples of Hadamard matrices include

(
+
)

,
(
+ +
+ −

)
,


+ + + +
+ + − −
+ − + −
+ − − +

 .



Orders of Hadamard matrices

Theorem
The order of a Hadamard matrix is 1, 2 or a multiple of 4.
We can ensure that the first row consists of all +s by column
sign changes. Then (assuming at least three rows) we can bring
the first three rows into the following shape by column
permutations:

a︷ ︸︸ ︷
+ . . . +

b︷ ︸︸ ︷
+ . . . +

c︷ ︸︸ ︷
+ . . . +

d︷ ︸︸ ︷
+ . . . +

+ . . . + + . . . + − . . . − − . . . −
+ . . . + − . . . − + . . . + − . . . −


Now orthogonality of rows gives

a + b = c + d = a + c = b + d = a + d = b + c = n/2,

so a = b = c = d = n/4.



The Hadamard conjecture

The Hadamard conjecture asserts that a Hadamard matrix
exists of every order divisible by 4. The smallest multiple of 4
for which no such matrix is currently known is 668, the value
428 having been settled only in 2005.



Symmetric Hadamard matrices

A particularly attractive class of Hadamard matrices are those
which are symmetric, have constant diagonal and constant row
sum.
Such matrices must have square order 4s2; the row sums are
±2s. [For the row sum σ is an eigenvalue of H, and hence σ2 is
an eigenvalue of H2 = HH>: thus σ2 = n.]
They give rise to symmetric 2-(4s2, 2s2 ± s, s2 ± s) designs and
strongly regular graphs.
In the case where the order is a power of 2, these matrices can
be constructed from bent functions (functions on a vector space
whose distance from the space of linear functions is maximal).
There are connections with coding theory and cryptography.



Skew-Hadamard matrices

A matrix A is skew if A> = −A.
A Hadamard matrix can’t really be skew, since in characteristic
not 2, a skew matrix has zero diagonal. So we compromise and
define a skew-Hadamard matrix H to be one which has
constant diagonal +1 and such that H− I is skew.
The property is preserved by simultaneous row and column
sign changes, so we can normalise the matrix so that its first
row is +1 and its first column (apart from the first entry) is −1.
It is conjectured that skew-Hadamard matrices of all orders
divisible by 4 exist. The smallest unsolved case is 188.



Doubly regular tournaments
If we delete the first row and column of a skew-Hadamard
matrix, and replace the diagonal 1s by 0s, we obtain the
adjacency matrix of a doubly regular tournament. This means a
tournament on n = 4t + 3 vertices, in which each vertex has in-
and out-degree 2t + 1, and for any two distinct vertices v and
w, there are t vertices z with v→ z and w→ z.
Conversely, any doubly regular tournament on n vertices gives
a skew-Hadamard matrix on n + 1 vertices.
In a forthcoming paper, Bailey, Cameron, Filipiak, Kunert and
Markiewicz use Hamiltonian decompositions of doubly regular
tournaments to construct universally optimal circular
repeated-measurements designs.

Problem
Does every doubly regular tournament have a Hamiltonian
decomposition?
Indeed, Kelly conjectured in the 1960s that every regular
tournament has a Hamiltonian decomposition.



An example



0 + + − + − −
− 0 + + − + −
− − 0 + + − +
+ − − 0 + + −
− + − − 0 + +
+ − + − − 0 +
+ + − + − − 0





+ + + + + + + +
− + + + − + − −
− − + + + − + −
− − − + + + − +
− + − − + + + −
− − + − − + + +
− + − + − − + +
− + + − + − − +


This is related to the Fano plane:
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Paley tournaments

The simplest construction of doubly regular tournaments starts
with a finite field of order q ≡ 3 (mod 4). The vertices are the
elements of the field, and there is an arc x→ y if and only if
y− x is a square. (This is a tournament because −1 is a
non-square, and therefore y− x is a square if and only if x− y is
not.)
If q is prime, then there is an obvious Hamiltonian
decomposition: for each non-zero square s, take the
Hamiltonian cycle

(0, s, 2s, 3s, . . . ,−s).

However, if q is not a prime, it is not so obvious how to
proceed.



Conference matrices
A conference matrix of order n is an n× n matrix C with
diagonal entries 0 and off-diagonal entries ±1 which satisfies
CC> = (n− 1)I.
We have:

I The defining equation shows that any two rows of C are
orthogonal. The contributions to the inner product of the
ith and jth rows coming from the ith and jth positions are
zero; each further position contributes +1 or −1; there
must be equally many (namely (n− 2)/2) contributions of
each sign. So n is even.

I The defining equation gives C−1 = (1/(n− 1))C>, whence
C>C = (n− 1)I. So the columns are also pairwise
orthogonal.

I The property of being a conference matrix is unchanged
under changing the sign of any row or column, or
simultaneously applying the same permutation to rows
and columns.



Symmetric and skew-symmetric

Using row and column sign changes, we can assume that all
entries in the first row and column (apart from their
intersection) are +1; then any row other than the first has n/2
entries +1 (including the first entry) and (n− 2)/2 entries −1.
Let C be such a matrix, and let S be the matrix obtained from C
by deleting the first row and column.

Theorem
If n ≡ 2 (mod 4) then S is symmetric; if n ≡ 0 (mod 4) then S is
skew-symmetric.



Proof of the theorem
Suppose first that S is not symmetric. Without loss of
generality, we can assume that S12 = +1 while S21 = −1. Each
row of S has m entries +1 and m entries −1, where n = 2m + 2;
and the inner product of two rows is −1.
Suppose that the first two rows look as follows:

0 + + · · ·+ + · · ·+ − · · · − − · · · −
− 0 + · · ·+︸ ︷︷ ︸

a

− · · · −︸ ︷︷ ︸
b

+ · · ·+︸ ︷︷ ︸
c

− · · · −︸ ︷︷ ︸
d

Now row 1 gives a + b = m− 1, c + d = m;
row 2 gives a + c = m, b + d = m− 1;
and the inner product gives a + d = m− 1, b + c = m.
From these we obtain

a = 1
2 ((a + b) + (a + c)− (b + c)) = (m− 1)/2,

so m is odd, and n ≡ 0 (mod 4).

The other case is similar.



By slight abuse of language, we call a normalised conference
matrix C symmetric or skew according as S is symmetric or skew
(that is, according to the congruence on n (mod 4)). A
“symmetric” conference matrix really is symmetric, while a
skew conference matrix becomes skew if we change the sign of
the first column.



Symmetric conference matrices

Let C be a symmetric conference matrix. Let A be obtained from
S by replacing +1 by 0 and −1 by 1.Then A is the incidence
matrix of a strongly regular graph of Paley type: that is, a graph
with n− 1 vertices in which every vertex has degree (n− 2)/2,
two adjacent vertices have (n− 6)/4 common neighbours, and
two non-adjacent vertices have (n− 2)/4 common neighbours.
The matrix S is called the Seidel adjacency matrix of the graph.
The complementary graph has the same properties.
Symmetric conference matrices are associated with other
combinatorial objects, among them regular two-graphs, sets of
equiangular lines in Euclidean space, switching classes of
graphs. A conference matrix can produce many different
strongly regular graphs by choosing different rows and
columns for the normalisation.
Again the Paley construction works, on a field of order q ≡ +1
(mod 4); join x to y if y− x is a square. (This time, −1 is a
square, so y− x is a square if and only if x− y is.)



An example

The Paley graph on 5 vertices is the 5-cycle. We obtain a
symmetric conference matrix by bordering the Seidel adjacency
matrix as shown.
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C
C
C
CC



0 + + + + +
+ 0 − + + −
+ − 0 − + +
+ + − 0 − +
+ + + − 0 −
+ − + + − 0





Another example 

0 − − − + + − + +
− 0 − + − + + − +
− − 0 + + − + + −
− + + 0 − − − + +
+ − + − 0 − + − +
+ + − − − 0 + + −
− + + − + + 0 − −
+ − + + − + − 0 −
+ + − + + − − − 0


A new first row and column, with 0 in the (1, 1) position and
other entries +, gives a symmetric conference matrix of
order 10.
The MSG logo is the Paley graph on GF(9). (Exercise: Prove
this!)



A theorem of van Lint and Seidel asserts that, if a symmetric
conference matrix of order n exists, then n− 1 is the sum of two
squares. Thus there is no such matrix of order 22 or 34. They
exist for all other orders up to 42 which are congruent to 2
(mod 4), and a complete classification of these is known up to
order 30.
The simplest construction is that by Paley, in the case where
n− 1 is a prime power: the matrix S has rows and columns
indexed by the finite field of order n− 1, and the (i, j) entry is
+1 if j− i is a non-zero square in the field, −1 if it is a
non-square, and 0 if i = j.
Symmetric conference matrices first arose in the field of
conference telephony.



Skew conference matrices

Let C be a “skew conference matrix”. By changing the sign of
the first column, we can ensure that C really is skew: that is,
C> = −C. Now (C + I)(C> + I) = nI, so H = C + I is a
Hadamard matrix. It is a skew-Hadamard matrix, as defined
earlier; apart from the diagonal, it is skew. Conversely, if H is a
skew-Hadamard matrix, then H− I is a skew conference
matrix.
If C is a skew conference matrix, then S is the adjacency matrix
of a doubly regular tournament, as we saw earlier. (Recall that
this is a directed graph on n− 1 vertices in which every vertex
has in-degree and out-degree (n− 2)/2 and every pair of
vertices have (n− 4)/4 common in-neighbours (and the same
number of out-neighbours).
Again this is equivalent to the existence of a skew conference
matrix.



Dennis Lin’s problem
Dennis Lin is interested in skew-symmetric matrices C with
diagonal entries 0 (as they must be) and off-diagonal entries
±1, and also in matrices of the form H = C + I with C as
described. He is interested in the largest possible determinant
of such matrices of given size. Of course, it is natural to use the
letters C and H for such matrices, but they are not necessarily
conference or Hadamard matrices. So I will call them cold
matrices and hot matrices respectively.



Of course, if n is a multiple of 4, the maximum determinant for
C is realised by a skew conference matrix (if one exists, as is
conjectured to be always the case), and the maximum
determinant for H is realised by a skew-Hadamard matrix. In
other words, the maximum-determinant cold and hot matrices
C and H are related by H = C + I.
In view of the skew-Hadamard conjecture, I will not consider
multiples of 4 for which a skew conference matrix fails to exist.
A skew-symmetric matrix of odd order has determinant zero;
so there is nothing interesting to say in this case. So the
remaining case is that in which n is congruent to 2 (mod 4).



Lin made the first half of the following conjecture, and the
second half seems as well supported:

Conjecture

For orders congruent to 2 (mod 4), if C is a cold matrix with
maximum determinant, then C + I is a hot matrix with maximum
determinant; and, if H is a hot matrix with maximum determinant,
then H− I is a cold matrix with maximum determinant.
Of course, he is also interested in the related questions:

I What is the maximum determinant?
I How do you construct matrices achieving this maximum

(or at least coming close)?



Hot matrices

Ehlich and Wojtas (independently) considered the question of
the largest possible determinant of a matrix with entries ±1
when the order is not a multiple of 4. They showed:

Theorem
For n ≡ 2 (mod 4), the determinant of an n× n matrix with entries
±1 is at most 2(n− 1)(n− 2)(n−2)/2.
Of course this is also an upper bound for the determinant of a
hot matrix.
We believe there should be a similar bound for the determinant
of a cold matrix.



Meeting the Ehlich–Wojtas bound

Will Orrick (personal communication) showed:

Theorem
A hot matrix of order n can achieve the Ehlich–Wojtas bound if and
only if 2n− 3 is a perfect square.
This allows n = 6, 14, 26 and 42, but forbids, for example,
n = 10, 18 and 22.



Computational results

These are due to me, Will Orrick, and Gordon Royle.
Lin’s conjecture is confirmed for n = 6 and n = 10. The
maximum determinants of hot and cold matrices are (160, 81)
for n = 6 (the former meeting the EW bound) and
(64000, 33489) for n = 10 (the EW bound is 73728). In each case
there is a unique maximising matrix up to equivalence.
Random search by Gordon Royle gives strong evidence for the
truth of Lin’s conjecture for n = 14, 18, 22 and 26, and indeed
finds only a few equivalence classes of maximising matrices in
these cases.



Will Orrick searched larger matrices, assuming a special
bi-circulant form for the matrices. He was less convinced of the
truth of Lin’s conjecture; he conjectures that the maximum
determinant of a hot matrix is at least cnn/2 for some positive
constant c, and found pairs of hot matrices with determinants
around 0.45nn/2 where the determinants of the corresponding
cold matrices are ordered the other way.


