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and many happy returns ...



Hadamard's theorem

Let H be an n x n matrix, all of whose entries are at most 1 in
modulus. How large can det(H) be?

Now det(H) is equal to the volume of the n-dimensional
parallelepiped spanned by the rows of H. By assumption, each
row has Euclidean length at most n'/2, so that det(H) < n"/?;
equality holds if and only if

» every entry of His £1;
» the rows of H are orthogonal, that is, HH T =ul

A matrix attaining the bound is a Hadamard matrix.
This is a nice example of a continuous problem whose solution
brings us into discrete mathematics.



Remarks

» HH' =nl=H '=n"'H" = H"H = nl, so a Hadamard
matrix also has orthogonal columns.

» Changing signs of rows or columns, permuting rows or
columns, or transposing preserve the Hadamard property.

Examples of Hadamard matrices include
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Orders of Hadamard matrices

Theorem
The order of a Hadamard matrix is 1, 2 or a multiple of 4.
We can ensure that the first row consists of all +s by column

sign changes. Then (assuming at least three rows) we can bring
the first three rows into the following shape by column

permutations:
a b c d
—— —— —— —
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Now orthogonality of rows gives
a+b=c+d=a+c=b+d=a+d=b+c=mn/2,

soa=b=c=d=mn/4.



The Hadamard conjecture

The Hadamard conjecture asserts that a Hadamard matrix
exists of every order divisible by 4. The smallest multiple of 4
for which no such matrix is currently known is 668, the value
428 having been settled only in 2005.



Symmetric Hadamard matrices

A particularly attractive class of Hadamard matrices are those
which are symmetric, have constant diagonal and constant row
sum.

Such matrices must have square order 4s%; the row sums are
£2s. [For the row sum ¢ is an eigenvalue of H, and hence o2
an eigenvalue of H> = HH': thus 02 = n.]

They give rise to symmetric 2-(4s?,2s* + s, s> + s) designs and
strongly regular graphs.

In the case where the order is a power of 2, these matrices can
be constructed from bent functions (functions on a vector space
whose distance from the space of linear functions is maximal).
There are connections with coding theory and cryptography.
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Skew-Hadamard matrices

A matrix A is skew if AT = —A.

A Hadamard matrix can’t really be skew, since in characteristic
not 2, a skew matrix has zero diagonal. So we compromise and
define a skew-Hadamard matrix H to be one which has
constant diagonal 41 and such that H — I is skew.

The property is preserved by simultaneous row and column
sign changes, so we can normalise the matrix so that its first
row is +1 and its first column (apart from the first entry) is —1.
It is conjectured that skew-Hadamard matrices of all orders
divisible by 4 exist. The smallest unsolved case is 188.



Doubly regular tournaments

If we delete the first row and column of a skew-Hadamard
matrix, and replace the diagonal 1s by Os, we obtain the
adjacency matrix of a doubly regular tournament. This means a
tournament on n = 4t + 3 vertices, in which each vertex has in-
and out-degree 2t + 1, and for any two distinct vertices v and
w, there are t vertices z withv — zand w — z.

Conversely, any doubly regular tournament on 7 vertices gives
a skew-Hadamard matrix on n + 1 vertices.

In a forthcoming paper, Bailey, Cameron, Filipiak, Kunert and
Markiewicz use Hamiltonian decompositions of doubly regular
tournaments to construct universally optimal circular
repeated-measurements designs.

Problem
Does every doubly reqular tournament have a Hamiltonian
decomposition?

Indeed, Kelly conjectured in the 1960s that every regular
tournament has a Hamiltonian decomposition.



An example
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This is related to the Fano plane:




Paley tournaments

The simplest construction of doubly regular tournaments starts
with a finite field of order 4 = 3 (mod 4). The vertices are the
elements of the field, and there is an arc x — y if and only if

y — x is a square. (This is a tournament because —1 is a
non-square, and therefore y — x is a square if and only if x — y is
not.)

If g is prime, then there is an obvious Hamiltonian
decomposition: for each non-zero square s, take the
Hamiltonian cycle

(0,s,2s,3s,...,—s).

However, if g is not a prime, it is not so obvious how to
proceed.



Conference matrices

A conference matrix of order # is an n x n matrix C with
diagonal entries 0 and off-diagonal entries 1 which satisfies
CC'=mn-1)L

We have:

» The defining equation shows that any two rows of C are
orthogonal. The contributions to the inner product of the
ith and jth rows coming from the ith and jth positions are
zero; each further position contributes +1 or —1; there
must be equally many (namely (n — 2)/2) contributions of
each sign. So n is even.

» The defining equation gives C™! = (1/(n —1))C', whence
C'C = (n— 1)L So the columns are also pairwise
orthogonal.

» The property of being a conference matrix is unchanged
under changing the sign of any row or column, or
simultaneously applying the same permutation to rows
and columns.



Symmetric and skew-symmetric

Using row and column sign changes, we can assume that all
entries in the first row and column (apart from their
intersection) are +1; then any row other than the first has n/2
entries +1 (including the first entry) and (n — 2) /2 entries —1.
Let C be such a matrix, and let S be the matrix obtained from C
by deleting the first row and column.

Theorem
Ifn =2 (mod 4) then S is symmetric; ifn =0 (mod 4) then S is
skew-symmetric.



Proof of the theorem
Suppose first that S is not symmetric. Without loss of
generality, we can assume that S1, = 41 while Sp; = —1. Each
row of S has m entries +1 and m entries —1, where n = 2m + 2;
and the inner product of two rows is —1.
Suppose that the first two rows look as follows:

- 0 4+---+ oot ==
a b c d
Now row 1 givesa+b=m—1,c+d=m
row 2givesa+c=m,b+d=m—1;
and the inner product givesa+d =m —1,b+c=m
From these we obtain

a=3(@a+b)+(a+c)—(b+c))=(m—1)/2,

somisodd,and n =0 (mod 4).

The other case is similar.



By slight abuse of language, we call a normalised conference
matrix C symmetric or skew according as S is symmetric or skew
(that is, according to the congruence on n (mod 4)). A
“symmetric” conference matrix really is symmetric, while a
skew conference matrix becomes skew if we change the sign of
the first column.



Symmetric conference matrices

Let C be a symmetric conference matrix. Let A be obtained from
S by replacing +1 by 0 and —1 by 1.Then A is the incidence
matrix of a strongly reqular graph of Paley type: that is, a graph
with n — 1 vertices in which every vertex has degree (n —2)/2,
two adjacent vertices have (n — 6) /4 common neighbours, and
two non-adjacent vertices have (n — 2) /4 common neighbours.
The matrix S is called the Seidel adjacency matrix of the graph.
The complementary graph has the same properties.

Symmetric conference matrices are associated with other
combinatorial objects, among them regular two-graphs, sets of
equiangular lines in Euclidean space, switching classes of
graphs. A conference matrix can produce many different
strongly regular graphs by choosing different rows and
columns for the normalisation.

Again the Paley construction works, on a field of order g = +1
(mod 4); join x to y if y — x is a square. (This time, —1isa
square, so y — x is a square if and only if x — v is.)



An example

The Paley graph on 5 vertices is the 5-cycle. We obtain a
symmetric conference matrix by bordering the Seidel adjacency
matrix as shown.

0 + + + + +
+ 0 — + + -
+ - 0 — + +
+ 4+ - 0 — +
+ 4+ + - 0 -
+ - 4+ + =0



Another example

0 — — — + + — + +
-0 - 4+ - + + - +
- -0 + + - 4+ + -
-+ 4+ 0 - - - + +
+ -+ -0 - + - +
+ 4+ - = = 0 + + -
-4+ + -+ + 0 - -
+ -+ 4+ - + - 0 —
+ + -+ + - - -0

A new first row and column, with 0 in the (1,1) position and
other entries +, gives a symmetric conference matrix of
order 10.

The MSG logo is the Paley graph on GF(9). (Exercise: Prove
this!)




A theorem of van Lint and Seidel asserts that, if a symmetric
conference matrix of order n exists, then n — 1 is the sum of two
squares. Thus there is no such matrix of order 22 or 34. They
exist for all other orders up to 42 which are congruent to 2
(mod 4), and a complete classification of these is known up to
order 30.

The simplest construction is that by Paley, in the case where

n —11is a prime power: the matrix S has rows and columns
indexed by the finite field of order n — 1, and the (i, ) entry is
+1if j — i is a non-zero square in the field, —1ifitisa
non-square, and 0 if i = ;.

Symmetric conference matrices first arose in the field of
conference telephony.



Skew conference matrices

Let C be a “skew conference matrix”. By changing the sign of
the first column, we can ensure that C really is skew: that is,
C'=—C.Now (C+I)(C"+I)=nl,soH=C+Iisa
Hadamard matrix. It is a skew-Hadamard matrix, as defined
earlier; apart from the diagonal, it is skew. Conversely, if H is a
skew-Hadamard matrix, then H — I is a skew conference
matrix.

If C is a skew conference matrix, then S is the adjacency matrix
of a doubly regular tournament, as we saw earlier. (Recall that
this is a directed graph on n — 1 vertices in which every vertex
has in-degree and out-degree (n — 2) /2 and every pair of
vertices have (n — 4)/4 common in-neighbours (and the same
number of out-neighbours).

Again this is equivalent to the existence of a skew conference
matrix.



Dennis Lin's problem

Dennis Lin is interested in skew-symmetric matrices C with
diagonal entries 0 (as they must be) and off-diagonal entries
+1, and also in matrices of the form H = C + I with C as
described. He is interested in the largest possible determinant
of such matrices of given size. Of course, it is natural to use the
letters C and H for such matrices, but they are not necessarily
conference or Hadamard matrices. So I will call them cold
matrices and hot matrices respectively.



Of course, if n is a multiple of 4, the maximum determinant for
C is realised by a skew conference matrix (if one exists, as is
conjectured to be always the case), and the maximum
determinant for H is realised by a skew-Hadamard matrix. In
other words, the maximum-determinant cold and hot matrices
C and H are related by H = C + 1.

In view of the skew-Hadamard conjecture, I will not consider
multiples of 4 for which a skew conference matrix fails to exist.
A skew-symmetric matrix of odd order has determinant zero;
so there is nothing interesting to say in this case. So the
remaining case is that in which # is congruent to 2 (mod 4).



Lin made the first half of the following conjecture, and the
second half seems as well supported:
Conjecture
For orders congruent to 2 (mod 4), if C is a cold matrix with
maximum determinant, then C + I is a hot matrix with maximum
determinant; and, if H is a hot matrix with maximum determinant,
then H — I is a cold matrix with maximum determinant.
Of course, he is also interested in the related questions:

» What is the maximum determinant?

» How do you construct matrices achieving this maximum
(or at least coming close)?



Hot matrices

Ehlich and Wojtas (independently) considered the question of
the largest possible determinant of a matrix with entries +1
when the order is not a multiple of 4. They showed:

Theorem

For n = 2 (mod 4), the determinant of an n X n matrix with entries
+1 is at most 2(n — 1) (n —2)("=2)/2,

Of course this is also an upper bound for the determinant of a
hot matrix.

We believe there should be a similar bound for the determinant
of a cold matrix.



Meeting the Ehlich—-Wojtas bound

Will Orrick (personal communication) showed:

Theorem

A hot matrix of order n can achieve the Ehlich—Wojtas bound if and
only if 2n — 3 is a perfect square.

This allows n = 6, 14, 26 and 42, but forbids, for example,

n = 10, 18 and 22.



Computational results

These are due to me, Will Orrick, and Gordon Royle.

Lin’s conjecture is confirmed for n = 6 and n = 10. The
maximum determinants of hot and cold matrices are (160, 81)
for n = 6 (the former meeting the EW bound) and

(64000, 33489) for n = 10 (the EW bound is 73728). In each case
there is a unique maximising matrix up to equivalence.
Random search by Gordon Royle gives strong evidence for the
truth of Lin’s conjecture for n = 14, 18, 22 and 26, and indeed
finds only a few equivalence classes of maximising matrices in
these cases.



Will Orrick searched larger matrices, assuming a special
bi-circulant form for the matrices. He was less convinced of the
truth of Lin’s conjecture; he conjectures that the maximum
determinant of a hot matrix is at least cn”/? for some positive
constant ¢, and found pairs of hot matrices with determinants
around 0.451"/2 where the determinants of the corresponding
cold matrices are ordered the other way.



