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Relations and algebras

Given a relational structure R, there are several similar ways to
produce algebraic structures from R, including

I the automorphism group Aut(R);
I the endomorphism monoid End(R);
I the polymorphism clone Poly(R).

What about going in the other direction?



From algebras to relations

There is a generic method of producing a relational structure
from a permutation group, transformation semigroup, or
function clone: simply take all the invariant relations.
The power of this method for permutation groups was shown
by the results obtained by pioneers such as Helmut Wielandt
and Donald Higman.
By contrast, I will discuss a very specific method, which

I applies only to endomorphism monoids;
I produces a (simple undirected) graph.

First a very brief introduction to graph homomorphisms.



Homomorphisms of graphs

A homomorphism from graph Γ1 to Γ2 is a map from vertices
of Γ1 to vertices of Γ2 which maps edges to edges. Its action on
non-edges is unrestricted: a non-edge may map to a non-edge,
or to an edge, or may collapse to a single vertex.
The complete graph Kr on r vertices has all possible edges
between its vertices.

Proposition

I There is a homomorphism from Kr to Γ if and only if ω(Γ) ≥ r,
where ω denotes clique number.

I There is a homomorphism from Γ to Kr if and only if χ(Γ) ≤ r,
where χ denotes the chromatic number.



Endomorphisms and cores

An endomorphism of Γ is a homomorphism from Γ to itself.
The core of a graph Γ is the smallest graph Core(Γ) having
homomorphisms to and from Γ. It is unique up to
isomorphism, and occurs as an induced subgraph of Γ (i.e.,
some of the vertices of Γ, all edges of Γ within its vertex set),
and indeed is the image of a retraction of Γ.

Proposition

The following are equivalent:
I the core of Γ is Kr;
I ω(Γ) = χ(Γ) = r.



The graph of a transformation monoid

Let M be a transformation monoid on a set X. We define a
graph Gr(M) as follows:

I the vertex set of Gr(M) is X;
I vertices v and w are joined by an edge if and only if there is

no element f ∈ M which identifies them (vf = wf ).
This is not functorial, but at least has one nice property; it is
inclusion-reversing:

Proposition

If M1 ≤ M2, then Gr(M2) is a spanning subgraph of Gr(M1).
(A spanning subgraph of Γ uses all the vertices and some of the
edges of Γ.)



Going both ways

Proposition

For any transformation monoid M, we have M ≤ End(Gr(M)).

Proof.
Let {v, w} be an edge of Gr(M), and take f ∈ M. We must show
that f maps {v, w} to an edge of Gr(M). If not, there are two
possibilities:

I vf = wf : this contradicts the fact that {v, w} is an edge of
Gr(M).

I {vf , wf} is a non-edge of Gr(M): then by definition, there
exists g ∈ M such that (vf )g = (wf )g. So v(fg) = w(fg)
with fg ∈ M, again contradicting the fact that {v, w} is an
edge of Gr(M).



Going both ways, 2

Given a graph Γ, we call Gr(End(Γ)) the hull of Γ, denoted by
Hull(Γ).
Since edges of Γ are not collapsed by endomorphisms, they are
edges of Hull(Γ). So Γ is a spanning subgraph of its hull.
We see that the construction of the hull does not decrease the
symmetry of Γ.

Example
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No endomorphism collapses a and d, so ad is an edge in the
hull.



And further . . .

Proposition

Gr(End(Gr(M))) = Gr(M).

Proof.
Since M ≤ End(Gr(M)), we see that Gr(End(Gr(M))) is a
spanning subgraph of Gr(M).
On the other hand, Gr(M) is a spanning subgraph of its hull,
which is Gr(End(Gr(M))).
So both the operators M 7→ End(Gr(M)) on monoids and
Γ 7→ Hull(Γ) on graphs are idempotent.



Cores and hulls

The hull of a graph is, in some sense, a “dual” to the core.
Core(Γ) is an induced subgraph of Γ (the smallest graph
hom-equivalent to Γ); Hull(Γ) is a graph containing Γ as a
spanning subgraph.

I The hull of Γ is complete if and only if Γ is a core.
I If Γ is a hull then the core of Γ is complete
I . . . but the converse of this statement is false.
I In particular, Core(Hull(Γ)) is a complete graph on

Core(Γ).



The graph of a monoid

We are particularly interested in using Gr(M) as a tool to study
M.

Proposition

The minimum rank of an element of M, the clique number of Gr(M),
and the chromatic number of Gr(M) are all equal.

Proof.
If f ∈ M has minimum rank, then no two elements of the image
of f can be identified by any element of M, so the image of f is a
clique in Gr(M); and then f is a colouring of Gr(M).

Corollary

I Gr(M) is complete if and only if M is a permutation group (i.e.,
contained in the symmetric group).

I Gr(M) is null if and only if M is synchronizing (i.e. contains a
transformation of rank 1).



The obstruction to synchronization

Theorem
The transformation monoid M on X fails to be synchronizing if and
only if there exists a graph Γ on the vertex set X with the properties

I Γ is not the null graph;
I ω(Γ) = χ(Γ) (equivalently, Core(Γ) is complete);
I M ≤ End(Γ).

Proof.
Gr(M) has the second and third properties of the theorem, and
is non-null if and only if M is not synchronizing.
Conversely, if M is contained in the endomorphism monoid of
a non-null graph, then no edge of the graph is collapsed by M,
and so M is not synchronizing.



Another graph

For a graph Γ, we define the derived graph Γ′ to be the
spanning subgraph of Γ which contains only those edges of Γ
which are contained in cliques of maximum size ω(Γ).
Now ω(Γ) = ω(Γ′) by definition, while χ(Γ′) ≤ χ(Γ) (since
some edges have been deleted).
Thus, if ω(Γ) = χ(Γ) = r, then also ω(Γ′) = χ(Γ′) = r.
Moreover, End(Γ) ≤ End(Γ′), since endomorphisms preserve
cliques of maximum size.
Hence Gr′(M) has the properties required for the theorem on
the preceding slide, together with the additional property that
every edge is contained in a clique of maximum size.
This extra property is sometimes useful. An application
follows.



Maximal non-synchronizing monoids

Theorem
Let M be a transformation monoid on n points which is maximal with
respect to being non-synchronizing. Then there are graphs Γ and ∆
such that

I End(Γ) = End(∆) = M;
I ω(Γ) = ω(∆) = χ(Γ) = χ(∆);
I Γ = Hull(∆) and ∆ = Γ′.

Theorem
Let Γ be a non-null graph satisfying Γ = Hull(Γ) = Γ′. Then
End(Γ) is a maximal non-synchronizing transformation monoid.

Problem
Find a necessary and sufficient condition!



Permutation groups

For the next part of the lecture, we need to revise some
properties of permutation groups. A permutation group on X
is a subgroup of the symmetric group on X.
Note that the theory of finite permutation groups, the oldest
part of group theory, has been revolutionised by the
classification of finite simple groups. I will have more to say
about this later.



Properties of permutation groups

In order to define the next few properties, we say that a
structure of some kind on X is trivial if it is invariant under the
symmetric group on X, and non-trivial otherwise.
Now a permutation group G on X is

I transitive if it preserves no non-trivial subset of X;
I primitive if it preserves no non-trivial partition of X;
I basic if it preserves no non-trivial Cartesian power

structure on X;
I 2-homogeneous if it preserves no non-trivial graph on X;
I 2-transitive if it preserves no non-trivial binary relation on

X.
If you know other definitions of these concepts you should
have no trouble matching them up with the ones given here.



Synchronizing groups

A permutation group G is said to synchronize a map f if the
monoid 〈G, f 〉 is synchronizing.
The following theorem is due to Rystsov:

Theorem
A permutation group G on n points is primitive if and only if it
synchronizes every map of rank n− 1.

Proof.
⇐: If G preserves a non-trivial equivalence relation ≡, and
v ≡ w, then the map sending v to w and fixing all other points
is not synchronized by G.



Proof.
⇒: Conversely, suppose that M = 〈G, f 〉 is not synchronizing,
where f has rank n− 1, and let Γ = Gr(M). Suppose that v and
w have the same image under f . Then v and w are not joined in
Γ. So the neighbours of v and of w are both mapped bijectively
to the neighbours of vf = wf by f , and thus these neighbour
sets are equal. Putting x ≡ y if x and y have the same neighbour
sets, we obtain a non-trivial G-invariant equivalence relation,
so G is imprimitive.



A note on primitivity

We saw that primitivity, as I defined it earlier, is exactly
equivalent to synchronizing every map of rank n− 1.
However, there is one small awkwardness. According to this
definition, the trivial group acting on a set of cardinality 2 is
primitive, even though it is not transitive!
It is usual to exclude this exceptional case, and to re-define
primitivity in such a way that a primitive group is transitive. If
this is done (as I shall assume in future), then we must add to
Rystsov’s Theorem the assumption that n > 2.



Primitivity and synchronization

We say that a permutation group G is synchronizing if it
synchronizes every non-permutation. By Rystsov’s Theorem, a
synchronizing group of degree greater than 2 is primitive.
Does the converse hold?
The answer is no. The picture shows the 3× 3 grid, whose
automorphism group is the primitive group G = S3 o S2.
(Vertices in the same row or the same column are joined.)
The map taking each vertex to the vertex in the bottom row
obtained by moving south-east (wrapping round if necessary)
is a graph endomorphism and so is not synchronized by G.
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Testing synchronization

Many permutation group properties can be tested efficiently (in
polynomial time); these include transitivity, primitivity, and
2-homogeneity.
This is not known for synchronization, which seems more
difficult.
Here is an algorithm for a permutation group G, which is not
too far from state-of-the-art.

I Compute all the non-trivial G-invariant graphs.
I For each graph in the list, test whether its clique number

and chromatic number are equal.
I If the answer is ever “yes”, then G is non-synchronizing;

otherwise it is synchronizing.



This seems like a very inefficient algorithm:
I If G has m orbits on the set of 2-sets, then there are 2m − 2

non-trivial G-invariant graphs: all unions of orbits except
for the complete and null graphs.

I Clique number and chromatic number are both NP-hard
properties of graphs.

However, the algorithm is often better than it seems, and has
been used to test the synchronizing property for groups with
degrees up to several thousand.



1. Although the number of orbits on 2-sets can be linear in n,
and so the number of graphs to be checked can be exponential,
for many families of graphs these numbers are bounded.
For example, if a permutation group G has just two orbits on
unordered pairs of elements of the domain, then just one
complementary pair of graphs has to be tested.

2. Although both problems are NP-hard, in practice the clique
number is much easier to compute than the chromatic number
(and indeed parametrised complexity theory gives an
explanation of this), and often synchronization can be proved
with just clique nunber calculations.



Non-basic groups

Recall that a permutation group is non-basic if it preserves a
Cartesian power structure (aka Hamming scheme) on the point
set, and is basic if it preserves no such structure.
The k-dimensional cube graph over an alphabet of size m (with
n = mk vertices) has endomorphisms onto the l-dimensional
subcube for 1 ≤ l ≤ k, with image of size ml and kernel classes
of size mk−l.
Observing that the example on the last slide is non-basic, we
might wonder whether basic primitive groups are necessarily
synchronizing.



Basic groups

This also is false: there are various known families of graphs
whose with clique number equal to chromatic number, whose
automorphism groups are basic primitive groups. For example:

I The line graph of the complete graph Km has clique
number m− 1, and chromatic number m− 1 if m is even.
Its automorphism group is the symmetric group Sn (acting
on 2-sets).

I A classical polar space defines two graphs, where the
adjacency relation is orthogonality or non-orthogonality
respectively. The first has ω = χ if and only if the polar
space has a partition into ovoids, and the second if and
only if the polar space has both an ovoid and a spread. The
automorphism group is the corresponding classical group.



The O’Nan–Scott Theorem

One part of the O’Nan–Scott Theorem says that basic primitive
groups are of three types:

I affine, generated by the translations of a finite vector space
and an irreducible group of linear transformations;

I diagonal, which I will not describe here;
I almost simple, groups for which the unique minimal

normal subgroup is simple (but the action is not specified.
The two examples on the preceding slide are almost simple.
Examples of other types also occur.
So far, we are some way from a classification of the
synchronizing groups which are basic primitive groups.



Uniform endomorphisms

Recall that a map f is uniform if the kernel classes of f all have
the same size.

Proposition

If a vertex-transitive graph has clique number equal to chromatic
number, then the colouring endomorphisms are uniform.

Proof.
Let A be a maximum clique, and B a colour class in a minimum
colouring. Then Ag∩ B 6= ∅ for all automorphisms g. But this
inequality for all elements of a transitive group implies that
|A| · |B| = n, the number of vertices. So |B| is independent of
the chosen colour class.
Many other examples of uniform endomorphisms can be
constructed, such as the endomorphisms of the k-dimensional
cube graph mentioned earlier.



Araújo’s conjecture

These considerations lead João Araújo to the following

Conjecture

A primitive permutation group synchronizes every non-uniform map.
Various special cases of the conjecture were proved.
However, last month the first counterexample appeared, and
now we have an extremely interesting list of non-uniform maps
synchronized by primitive groups. We’ll see them in the final
lecture . . .


