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Lists

In his inaugural lecture as Professor of Poetry at Oxford,
W. H. Auden gave ‘four questions which, could I examine a
critic, I would ask him’. He said, ‘If a critic could truthfully
answer “yes” to all four, then I should trust his judgment
implicitly on all literary matters.’ The first . . . was ‘Do you
like, and by like I really mean like, not approve of on
principle, long lists of proper names such as the Old
Testament genealogies or the Catalogue of Ships in the
Iliad?’

Tiresias, Notes from Overground, 1984.



Lists of primitive groups

My talk is about lists, specifically lists of proper names of
primitive permutation groups of small degree.
Several theorems say, “Except for the symmetric and
alternating groups and a finite list, primitive groups have
such-and-such a property”. I will give a number of examples.
Computer algebra is often required to work out the lists
explicitly.



Some definitions

Let G be a permutation group acting on a finite set Ω, with
|Ω| = n > 1, and t an integer with 0 < t < n. We say that G is

I transitive if any point of Ω can be moved to any other by
some element of G;

I t-transitive if G acts transitively on the set of t-tuples of
distinct elements of Ω;

I t-homogeneous, or t-set transitive, if G acts transitively on
the set of t-element subsets of Ω;

I primitive if G is transitive and the only equivalence
relations on Ω preserved by G are the relation of equality
and the relation with a single equivalence class.

In the definition of primitivity, we require G to be transitive
simply to rule out the trivial group acting on a set of n = 2
points.



Two examples

Here are two examples of theorems of the type I am concerned
with. For each exception I give the degree, the number of the
group in the GAP list of primitive groups of that degree, and a
proper name for the group.

Theorem
Let G be a 4-transitive group of degree n which is not the symmetric
or alternating group of that degree. Then G is one of the following:
(11, 6, M11), (12, 4, M12), (23, 5, M23), (24, 1, M24).

Theorem
For 4 ≤ t ≤ n/2, let G be a t-homogeneous but not t-transitive group
of degree n. Then G is one of the following: (9, 8, PSL(2, 8)),
(9, 9, PΓL(2, 8)), (33, 2, PΓL(2, 32)).



Commentary

Re Theorem 1: The Classification of Finite Simple Groups
(CFSG), together with earlier work of a number of authors,
gives us a complete list of the 2-transitive groups; this list can
be found in various places. From the list we can read off that
the only 4-transitive groups, apart from symmetric and
alternating groups, are the four Mathieu groups listed. We have
no proof, and no prospect of one, without using CFSG.

Re Theorem 2: Livingstone and Wagner proved in 1964 that, for
5 ≤ t ≤ n/2, a t-homogeneous group is t-transitive. The
analogous result for t = 4 is a theorem of Kantor from the early
1970s, proved before CFSG was announced. At about the same
time Kantor also found all the t-homogeneous but not
t-transitive groups for t = 2 and t = 3.



What does CFSG do for us?

From the Classification of Finite Simple Groups, we do not
learn everything about finite permutation groups, but we do
learn a great deal. For example,

I All the 2-transitive groups are known. A theorem of
Burnside shows that such a group has a unique minimal
normal subgroup, which is either elementary abelian or
simple. In the second case, we apply CFSG (with a lot of
extra work!); in the first, the group is the semidirect
product of the additive group of a vector space by a
subgroup of the multiplicative group which is transitive on
non-zero vectors, and all such groups can be determined
(they have at most one non-abelian composition factor).

I All the rank 3 permutation groups (those having just three
orbits on pairs of distinct points) are known, by similar but
harder arguments.



I Primitive groups are small (order at most n1+log2 n), with
some exceptions (including the Mathieu groups).

I Primitive groups are rare. The set of natural numbers for
which there is a primitive group of degree n other than the
symmetric and alternating groups has density zero; the
number of numbers n ≤ x in this set is asymptotically
2x/ log x.

I Primitive groups of small degree (up to 4095) are known;
there are lists in GAP up to degree 2499 (the rest may
appear sometime).



Outline

I will now discuss two areas in which theorems of this type
have been proved:

I subsets with small or trivial stabilisers;
I theory of transformation semigroups.



Subsets with small stabilisers

The first topic goes back to a theorem I proved with Peter
Neumann and Jan Saxl in 1984:

Theorem
With the exception of the symmetric and alternating groups and a
finite list, if G is a primitive permutation group on Ω, then there is a
subset of Ω whose setwise stabiliser in G is trivial; that is, G has a
regular orbit on the power set of Ω.
The list of exceptions was computed by Ákos Seress in 1997,
and is on the next slide. Note that the GAP numbering has
changed since then!
There is an asymptotic form of this theorem: If G is primitive
but not symmetric or alternating, then the proportion of
G-orbits on the power set which are regular tends to 1 as
n→ ∞.



Seress’ list

Theorem
A primitive permutation group of degree n, not Sn or An, has a
regular orbit on the power set unless it is one of the following:
(5, 2, D10), (5, 3, AGL(1, 5)), (6, 1, PSL(2, 5)), (6, 2, PGL(2, 5)),
(7, 4, AGL(1, 7)), (7, 5, PSL(3, 2)), (8, 2, AΓL(1, 8)),
(8, 4, PSL(2, 7)), (8, 5, PGL(2, 7)), (8, 3, AGL(3, 2)),
(9, 2, 32 : D8), (9, 5, AΓL(1, 9)), (9, 6, ASL(2, 3)),
(9, 7, AGL(2, 3)), (9, 8, PSL(2, 8)), (9, 9, PΓL(2, 8)), (10, 2, S5),
(10, 3, PSL(2, 9)), (10, 5, PΣL(2, 9)), (10, 4, PGL(2, 9)),
(10, 6, M10), (10, 7, PΓL(2, 9)), (11, 1, PSL(2, 11)), (11, 2, M11),
(12, 4, PGL(2, 11)), (12, 1, M11), (12, 2, M12), (13, 7, PSL(3, 3)),
(14, 2, PGL(2, 13)), (15, 4, PSL(4, 2)), (16, 12, AΓL(2, 4)),
(16, 17, 24 : A6), (16, 16, 24 : S6), (16, 20, 24 : A7),
(16, 11, AGL(4, 2)), (17, 7, PSL(2, 16) : 2), (17, 8, PΓL(2, 16)),
(21, 7, PΓL(3, 4)), (22, 1, M22), (22, 2, M22 : 2), (23, 5, M23),
(24, 1, M24), (32, 3, AGL(5, 2)).



Ákos Seress, 1958–2013

One of the heroes of computational permutation group theory



First variation: automorphism groups of hypergraphs
A (uniform) hypergraph is a “graph” in which edges contain k
vertices, for some k ≥ 2.
Frucht showed that every group is the automorphism group of
a graph. But not every permutation group is the automorphism
group of a graph acting on the vertices (for example,
2-transitive groups cannot be). László Babai and I gave a
replacement for this missing result.



Automorphism groups of hypergraphs

Theorem
Apart from the alternating groups and finitely many others, every
primitive group is the full automorphism group (acting on vertices) of
a hypergraph.
Babai and I showed further that

I we can assume that the hypergraph is edge-transitive;
I asymptotically we can take the cardinality of edges in the

hypergraph to be n1/2+o(1) – this is essentially best possible.



Spiga’s list

The finite list of exceptions in the preceding theorem was
computed by Pablo Spiga (not yet published)



Theorem
If G is a primitive group which is not an alternating group and is not
the automorphism group of a hypegraph, then G is one of the
following: (5, 1, C5), (5, 3, AGL(1, 5)), (6, 2, PGL(2, 5)), (7, 1, C7),
(7, 3, C7 : C3), (8, 1, AGL(1, 8)), (8, 2, AΓL(1, 8)),
(8, 4, PSL(2, 7)), (9, 1, C2

3 : C4), (9, 4, AGL(1, 9)), (9, 3, M9),
(9, 6, ASL(2, 3)), (9, 8, PSL(2, 8), (9, 9, PΓL(2, 8)),
(10, 3, PSL(2, 9)), (10, 4, PGL(2, 9)).



Second variation: switching classes

The operation of switching with respect to a set of vertices
interchanges edges and non-edges between the set and its
complement, while leaving edges within the set or within its
complement unchanged. This gives an equivalence relation on
the class of all graphs on a given vertex set, whose equivalence
classes are called switching classes.
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History and connections

The operation of switching was introduced by Jaap Seidel in the
1960s, in connection with metric problems in elliptic geometry
(specifically, the congruence order of the elliptic plane).
It has connections with systems of equiangular lines in
Euclidean geometry, doubly transitive groups (similar ideas
were used by Graham Higman to give a combinatorial
construction of Conway’s group Co3), combinatorial geometry,
and cohomology of groups.
Seidel wrote several surveys on this topic which are highly
recommended.



The Seidel tree in Eindhoven



A representation theorem

The automorphism group of a switching class of graphs
contains the automorphism group of every graph in the class as
a subgroup.
Here is a Frucht-type theorem which is a converse to the
preceding remark.

Theorem
Given any finite group G, there is a switching class S of graphs with
the properties

I Aut(S) = G;
I for each subgroup H ≤ G, there is a graph Γ ∈ S with

Aut(Γ) = H.



Primitivity and rigidity

Here is the theorem relevant to the subject of this talk. Pablo
Spiga and I completed the proof a week or so ago. The paper
should appear on the arXiv this week.

Theorem
Let S be a switching class of graphs on n vertices, whose
automorphism group G is primitive. Then, if G is not the symmetric
group or one of a finite number of exceptions, there is a graph Γ ∈ S
such that Aut(Γ) is the trivial group. The list of exceptions is:
(5, 2, D10), (6, 1, PSL(2, 5)), (9, 2, 32 : D8), (10, 5, PΣL(2, 9)),
(14, 1, PSL(2, 13)), and (16, 16, 24 : S6).



João Araújo

João was the person who seduced me into working on the
connections between permutation groups and transformation
semigroups. He had a hand in most of the results to follow.



Second theme: transformation semigroups

Recently, results about finite permutation groups (often
depending on CFSG) have been used to study transformation
semigroups.
A transformation semigroup S on Ω may or may not contain
any permutations of Ω: if it does, then they form a permutation
group, which is the group of units of the semigroup.
However, even if there are no permutations in S, we have a
group to hand, namely the normaliser of S in the symmetric
group, the group

N(S) = {g ∈ Sym(Ω) : g−1Sg = S}.

We will see that this group has a big influence on S.



Levi–McFadden and McAlister

The following is the prototype for results of this kind. Let Sn
and Tn denote the symmetric group and full transformation
semigroup on {1, 2, . . . , n}.

Theorem
Let f ∈ Tn \ Sn, and let S be the semigroup generated by the
conjugates g−1fg for g ∈ Sn. Then

I S is idempotent-generated;
I S is regular;
I S = 〈Sn, f 〉 \ Sn.

In other words, semigroups of this form, with normaliser Sn,
have very nice properties!



The general problem

Problem

I Given a semigroup property P, for which pairs (G, f ), with
f ∈ Tn \ Sn and G ≤ Sn, does the semigroup 〈g−1fg : g ∈ G〉
have property P?

I Given a semigroup property P, for which pairs (G, f ) as above
does the semigroup 〈G, f 〉 \G have property P?

I For which pairs (G, f ) are the semigroups of the preceding parts
equal?



Further results

The following portmanteau theorem lists some previously
known results.

Theorem

I (Levi) For any f ∈ Tn \ Sn, the semigroups 〈g−1fg : g ∈ Sn〉 and
〈g−1fg : g ∈ An〉 are equal.

I (Araújo, Mitchell, Schneider) 〈g−1fg : g ∈ G〉 is
idempotent-generated for all f ∈ Tn \ Sn if and only if G = Sn or
G = An or G is one of three specific groups.

I (Araújo, Mitchell, Schneider) 〈g−1fg : g ∈ G〉 is regular for all
f ∈ Tn \ Sn if and only if G = Sn or G = An or G is one of nine
specific groups.



The lists

Here are the lists of Araújo, Mitchell and Schneider.

Theorem

I The three groups other than Sn and An for which 〈G, f 〉 is
idempotent-generated for all non-permutations f are
(5, 3, AGL(1, 5)), (6, 1, PSL(2, 5)) and (6, 2, PGL(2, 5)).

I The nine groups other than Sn and An for which 〈G, f 〉 is regular
for all non-permutations f are (5, 1, C5), (5, 2, D10),
(5, 3, AGL(1, 5)), (6, 1, PSL(2, 5)), (6, 2, PGL(2, 5)),
(7, 4, AGL(1, 7)), (8, 5, PGL(2, 7)), (9, 8, PSL(2, 8)) and
(9, 9, PΓL(2, 8)).



Some equivalent properties

Theorem (Araújo, Cameron)

Given k with 1 ≤ k ≤ n/2, the following are equivalent for a
subgroup G of Sn:

I for all rank k transformations f , f is regular in 〈G, f 〉;
I for all rank k transformations f , 〈f , G〉 is regular;
I for all rank k transformations f , f is regular in 〈g−1ag : g ∈ G〉;
I for all rank k transformations f , 〈g−1fg : g ∈ G〉 is regular.

Moreover, we have a complete list of the possible groups G with these
properties for k ≥ 5, and partial results for smaller values.
The four equivalent properties above translate into a property
of G which we call the k-universal transversal property, which
is a variant of k-homogeneity.



Our second theorem

Theorem (André, Araújo, Cameron)

We have a complete list (in terms of the rank and kernel type of f ) for
pairs (G, f ) for which 〈G, f 〉 \G = 〈Sn, f 〉 \ Sn.
As we saw, these semigroups have very nice properties.



Partition homogeneity and transitivity

For a partition λ, we say a permutation group G is
λ-homogeneous if it is transitive on partitions of shape λ, and
λ-transitive if it is transitive on ordered partitions of shape λ.
We have a complete classification of the groups which are
λ-homogeneous but not λ-transitive, except when
λ = (1, 1, . . . , 1) (in this case, every permutation group is
λ-homogeneous but only the symmetric group is λ-transitive).
Moreover, we have a description of λ-transitive groups: the
largest part λ1 of λ must be greater than n/2, and G must be
t-homogeneous, where t = n− λ1. All such groups can be
listed.
Using these results, we classify all pairs (G, f ) such that
〈G, f 〉 \G = 〈Sn, f 〉 \ Sn.



Our third theorem

Theorem (Araújo, Cameron, Mitchell, Neunhöffer)

The semigroups 〈G, f 〉 \G and 〈g−1fg : g ∈ G〉 are equal for all
f ∈ Tn \ Sn if and only if G = Sn, or G = An, or G is the trivial
group, or G is one of five specific groups, namely (5, 3, AGL(2, 5)),
(6, 1, PSL(2, 5)), (5, 2, PGL(2, 5)), (9, 8, PSL(2, 8)) and
(9, 9, PΓL(2, 8)).

Problem
It would be good to have a more refined version of this where the
hypothesis refers only to all maps of rank k, or just a single map f .



A taste of the proofs

Here is a sample theorem, stated a little imprecisely.

Theorem
Let G be a transitive permutation group of degree n, satisfying
log |G| = o(n1/2). Then the number of orbits of G on the power set is
close to 2n/|G|, and almost all these orbits are regular.
Now, using CFSG, it is known that primitive groups satisfy the
hypothesis, with the exception of Sn and An, Sm and Am acting
on 2-sets (with n = m(m− 1)/2) and subgroups of Sm o S2
containing A2

m (with n = m2.) Clearly Sn and An are genuine
exceptions, and the other groups here can be handled directly.
For example, for Sn on 2-sets, the orbits are isomorphism
classes of graphs, and almost all graphs have trivial
automorphism group.



Suppose that o is the number of G-orbits on P({1, . . . , n}), and
o∗ the number of these which are not regular. Let
o(G) = 2n/|G|(1 + ε1) and o∗ = ε2o. Since a non-regular orbit
has size at most |G|/2, a short calculation gives
(1 + ε1)(1− ε2/2) ≥ 1, so it suffices to show that ε1 is small.
Let the minimal degree of G (the smallest number of points
moved by a non-trivial element) be µ and the base size (the
smallest number of points whose stabiliser is trivial) be b. Then
bµ ≥ n, and |G| ≥ 2b; so o ≤ 2n/|G|+ 2n−µ/2.
From this it follws that, if log2 |G| = δn1/2, then

ε1 ≤ 2n1/2(δ−1/(2δ),

so if δ ≤ c for some c < 1/
√

2, then ε1 = o(1) as n→ ∞.



Computer systems such as GAP include lists of all primitive
permutation groups with degrees into the thousands. So as
long as we have a bound on n which is not too large, it is
possible in principle to check all primitive groups with degree
up to this bound. This is in essence what Seress and Spiga did.
Sometimes the checks might be rather slow. For example, how
do we test whether a primitive group G preserves a switching
class with the property that no graph in that class has trivial
automorphism group?
Fortunately the asymptotic results suggest that most graphs in
such a switching class will have trivial group, so we just
sample until we find one that does.


