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Synchronization

It is easy to test whether a finite-state automaton is
synchronizing. However, it appears to be very difficult to tell
whether a permutation group is synchronizing; this question
includes some hard problems in extremal combinatorics and
finite geometry as special cases.
In this talk I will outline the problem and speculate on some
approaches which might help.



Definitions

A (finite deterministic) automaton consists of a finite set Ω of
states, with a finite set S of transitions, maps from Ω to Ω.
The automaton is synchronizing if there is a word in the
transitions (called a reset word) which evaluates to a map of
rank 1.
Combinatorially, an automaton is an edge-coloured directed
graph on Ω such that every vertex is the source of a unique arc
of each colour.
Algebraically, since we are interested in composing maps, an
automaton is a transformation semigroup on Ω (a set of
transformations closed under composition) with a prescribed
set S of generators.



An example

u

u
u u

1

2

3

4

�
�
�
��

�
�
�
��

@
@

@
@@

@
@

@
@@

↙

↘ ↗

↖

.
.........................

........................

.......................
......................

......................
.......................

........................
.........................↙

.......................................................................
................ ...... ........ ........... ............. ................

................................................................. ...... ...... ................
........
...........
.............
................

. ................ ............. ........... ........ ...... ................
......................................................................

B R R R B R R R B
1 2 3 4 1 2 3 4 1 2
2 2 3 4 1 2 3 4 1 2
3 3 4 1 2 2 3 4 1 2
4 4 1 2 3 3 4 1 2 2

So BRRRBRRRB is a reset word.



Testing synchronization

Proposition

An automaton (Ω, S) is synchronizing if and only if, for any two
states a, b ∈ Ω, there is a word wa,b in the elements of S which maps a
and b to the same place.

Proof.
“Only if” is clear, so suppose that the condition holds. Let f be
an element of 〈S〉 of smallest possible rank. If the rank of f is
greater than 1, then choose two points a, b in the image; then
fwab has smaller rank than f . So f has rank 1, and the automaton
is synchronizing.
So we only have to consider all pairs of states.



The picture shows the previous example, extended to pairs of
states.
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Now it suffices to check that there is a path from any vertex on
the right to some vertex on the left; this can clearly be done in
polynomial time.



Graph homomorphisms

Let Γ and ∆ be graphs. A homomorphism from Γ to ∆ is a map
from the vertex set of Γ to that of ∆ which maps edges to edges.
(We don’t care what happens to non-edges; a non-edge may
map to a non-edge, or to an edge, or collapse to a single vertex.)
Kr denotes the complete graph on r vertices (with all possible
edges).

Proposition

I There is a homomorphism from Kr to Γ if and only if ω(Γ) ≥ r,
where ω denotes clique size.

I There is a homomorphism from Γ to Kr if and only if χ(Γ) ≤ r,
where χ denotes chromatic number.

Thus a graph Γ has homomorphisms to and from Kr if and only
if ω(Γ) = χ(Γ) = r.



Graph endomorphisms

An endomorphism of a graph is a homomorphism from the
graph to itself. The endomorphisms of Γ form a monoid
(semigroup with identity) denoted by End(Γ).
There is a very close connection between transformation
semigroups and graphs. The map Γ 7→ End(Γ) takes any graph
to a semigroup. We now define a map in the other direction.
Given a transformation semigroup S on a set V, we define a
graph Gr(S) on V by the rule that v ∼ w if and only if there is
no element f ∈ S for which vf = wf .
Note that, if S ≤ T, then Gr(S) contains Gr(T) as a spanning
subgraph; the map Gr is “inclusion-reversing”. (The map End
is not; we do not have a Galois correspondence here.)



Graphs and transformation semigroups

These correspondences have several further properties.

Theorem
Let S be a transformation semigroup on V.

I S ≤ End(Gr(S)), and Gr(S) = Gr(End(Gr(S))).
I The three numbers ω(Gr(S)), χ(Gr(S)), and the minimal rank

of an element of S are equal.
I S is non-synchronizing if and only if there exists a non-null

graph Γ on the vertex set V with S ≤ End(Γ); the graph Γ can
be assumed to further satisfy ω(Γ) = χ(Γ).

I Gr(S) is the null graph if and only if S is synchronizing, and is
the complete graph if and only if S ≤ Sym(V).



Synchronizing groups

The notion of a “synchronizing permutation group” is due to
João Araújo and Benjamin Steinberg.



Let G be a permutation group on V. By abuse of language, we
say that G is synchronizing if the semigroup 〈G, f 〉 generated by
G and f is synchronizing for any non-permutation f of V.
The notion has led to a very rich theory and raised some very
difficult computational questions about permutation groups,
some of which I will describe below.
The take-home message is that testing the synchronizing
property of a permutation group appears to be much harder
than other natural properties such as transitivity and
primitivity, and for specific classes of groups leads to very hard
problems in extremal combinatorics, finite geometry, etc.



How to recognise synchronizing groups

I will say that a subset, partition, graph, etc., on the set V is
trivial if it is invariant under the symmetric group on V, and
non-trivial otherwise. Thus, the trivial graphs are the complete
and null graphs.

Theorem
A permutation group G on V is non-synchronizing if and only if there
is a non-trivial graph Γ on V with ω(Γ) = χ(Γ) and G ≤ Aut(Γ).

Proof.
In one direction, if 〈G, f 〉 is not synchronizing, set
Γ = Gr(〈G, f 〉); then 〈G, f 〉 ≤ End(Γ), so G ≤ Aut(Γ).
In the other direction, if a graph Γ with the stated properties
exists, choose f to be an endomorphism of Γ whose image is a
maximal clique; then 〈G, f 〉 ≤ End(Γ), so 〈G, f 〉 is not
synchronizing.



Primitive and basic groups

A permutation group G on V is said to be
I transitive if it preserves no non-trivial subset of V;
I primitive if it is transitive and preserves no non-trivial

partition of V;
I basic if it is primitive and preserves no non-trivial

Hamming scheme (Cartesian product structure) on V;
I 2-transitive if it preserves no non-trivial binary relation on

V (and |V| ≥ 2).
All these properties of a permutation group can be tested in
polynomial time.



Synchronizing groups are basic

Theorem

I A synchronizing group is primitive.
I A synchronizing group is basic.
I A 2-transitive group is synchronizing.

To prove this, observe that an imprimitive group preserves a
complete multipartite graph, while a non-basic group preserves
a Hamming graph, and these graphs have clique number equal
to chromatic number. On the other hand, a 2-transitive group
preserves no non-trivial graph.



O’Nan–Scott and CFSG

According to the O’Nan–Scott Theorem, a basic group is of one
of three types:

I affine: generated by the translations of a finite vector space
V and a primitive group of linear transformations of V;

I diagonal: harder to describe, but the prototype is the
group S× S acting on S by left and right multiplication
(the multiplication group of S, regarding S as a loop),
where S is non-abelian simple;

I almost simple, that is, lying between a simple group and
its automorphism group.

The Classification of Finite Simple Groups tells us a lot about
all these types (in the affine case, it helps us understand the
primitive linear groups). It was hoped that this might lead to a
classification of synchronizing groups. But things are not so
easy . . .



An example

Let G be the symmetric group Sm of degree m in its induced
action on the 2-element subsets of {1, . . . , m}, with
n = m(m− 1)/2. This group is primitive (and basic) if m ≥ 5.
It is a rank 3 group, and so there are just two G-invariant
graphs:

I The triangular graph T(m), the line graph of Km. This
graph has clique number m− 1 (a maximal clique
consisting of all pairs containing a fixed element of
{1, . . . , m}), and chromatic number m− 1 if m is even, m if
m is odd. (If m is odd, the elements of a colour class are
pairwise disjoint, so there are at most bm/2c of them.)

I The complement of T(m) is the Kneser graph. Its clique
number is bm/2c, as above, but by a theorem of Lovász its
chromatic number is m− 2.

So G is synchronizing if and only if m is odd.



Classical groups

In many cases, testing a family of primitive basic groups for the
synchronizing property leads to intractible combinatorial
problems. Here is one class of examples. Apologies to those not
very familiar with the terminology.
Let G be a finite classical group (symplectic, orthogonal, or
unitary), acting on its associated polar space. There are just two
non-trivial G invariant graphs: the orthogonality graph and its
complement. So we have to decide whether these graphs can
have clique number equal to chromatic number.



A maximal clique in the collinearity graph is a maximal totally
isotropic (or totally singular) subspace.
The largest possible size of a clique in the non-collinearity
graph corresponds to an ovoid (a set meeting every maximal
subspace in a point).
So G is non-synchronizing if and only if either

I the polar space contains an ovoid and a spread (a collection
which partitions the point set) of maximal subspaces; or

I the polar space has a partition into ovoids.
Despite decades of work by finite geometers, we still do not
have a complete list of which classical polar spaces have either
of the structures described. Can the new techniques for
deciding if strongly regular graphs are cores resolve this?



Other types of groups

Other types of basic primitive groups such as affine and
diagonal groups raise further interesting problems.
For just one example, let S be a simple group, and G = S× S
acting on S, where the factors act by left and right
multiplication. The G-invariant graphs are the normal Cayley
graphs for S (the Cayley graphs whose connection sets are
invariant under conjugation), and cliques and colourings
correspond to subgroups of S meeting a restricted set of
conjugacy classes. So G fails to be synchronizing if it has a
factorization G = AB, where A∩ B = {1}, and A and B meet
disjoint collections of conjugacy classes.



Testing synchronization

As we saw, the property of being synchronizing is stronger
than those of being transitive, primitive or basic, and weaker
than 2-transitivity. In contrast to these, we do not have an
efficient test. The best we can do to test a given group G is

I construct all non-trivial G-invariant graphs (there are
2r − 2 of these, where r is the number of G-orbits on 2-sets);

I test each of these graphs Γ to find whether its clique
number and chromatic number are equal.

This involves exponentially many NP-hard problems! But the
graphs are rather special, since they admit basic primitive
groups. Permutation groups with degrees in the thousands
have been tested by this method.



Other ideas

Testing synchronization of a given semigroup is easy, as we
saw; but there are far too many maps f for testing 〈G, f 〉 to be
feasible.
Once we have constructed the graphs, could we short-cut
finding the clique and chromatic numbers by finding their
endomorphism semigroups by some nauty-like program? The
complexity of finding graph automorphism groups is not
known, but the complexity of finding endomorphism
semigroups is, unfortunately, known to be NP-hard.



In recent times a number of graph parameters which lie
between clique number and chromatic number (and which
may be easier to compute) have been studied. The most famous
of these is the Lovász parameter ϑ(Γ), related to Shannon
capacity; other invariants are due to Schrijver and Szegedy, and
there is vector chromatic number, quantum chromatic number,
. . .
These may be useful in proving synchronization in some cases!
Of course, it must be remembered that, even if the problems are
hard, the graphs with which we have to work are far from
typical, having primitive (and even basic) automorphism
groups.
We might also hope to learn more about graphs admitting
automorphism groups which are primitive on the vertices, in
particular, such graphs which have clique number equal to
chromatic number.



Synchronizing non-uniform maps

I conclude with two important open problems. In each case the
problem suggests that, while there are primitive
non-synchronizing groups, primitivity is in some sense the
important watershed.
The first is due to João Araújo. A transformation of V is called
non-uniform if not all inverse images of points in its image
have the same cardinality. Also, we say that the permutation G
synchronizes the map f if 〈G, f 〉 is synchronizing.

Conjecture

Let G be a primitive permutation group. Then G synchronizes every
non-uniform map.
The first case is a theorem of Rystsov, which asserts that a
permutation group of degree n is primitive if and only if it
synchronizes every map of rank n− 1. This is easily deduced
by graph-theoretic methods: see next slide.



Rystsov’s Theorem

Suppose that G is primitive but fails to synchronize some map f
of rank n− 1. Then there is a graph Γ (with clique number and
chromatic number equal) with 〈G, f 〉 ≤ End(Γ).
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Suppose that a and b are mapped to x by f ; the remaining
points are mapped bijectively. So the neighbours of a are
mapped bijectively to the neighbours of x, and so are the
neighbours of b. So a and b have the same neighbours, and the
relation “same neighbours” is an equivalence relation
preserved by G, contradicting primitivity.



Conversely, suppose that G is imprimitive. Then G preserves a
complete multipartite graph Γ whose parts are the blocks of
imprimitivity.
Choose f to map a to b, where a and b are two points in the
same multipartite block, and to fix everything else.
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Then f ∈ End(Γ), so f is a rank 1 map not synchronized by G.



Pushing further

João Araújo, Wolfram Bentz, and I have managed to prove the
conjecture for maps of rank very close to n, and also for small
ranks.
In some cases one can do better. For example, my student Artur
Schaefer has shown that, if G is a primitive permutation group
of rank 3 (this means that G has just three orbits on pairs of
points, so there is just one complementary pair of non-trivial
G-invariant graphs), then G synchronizes any non-uniform
map of rank at least roughly n−

√
n.

But for the general case we need a new idea!



Non-synchronizing ranks

Let G be a permutation group of degree n. A number r with
2 ≤ r ≤ n− 1 is an non-synchronizing rank of G if there is a
map of rank r not synchronized by G.

Proposition

An imprimitive group of degree n has at least ( 3
4 − o(1))n

non-synchronizing ranks.

Conjecture

A primitive group of degree n has at most O(log n)
non-synchronizing ranks, while a basic group has at most
O(log log n) non-synchronizing ranks.
The automorphism group of the Hamming scheme H(r, m),
namely Sm o Sr, has non-synchronizing ranks mi for
i = 1, 2, . . . , r− 1, and probably no others (work of Artur
Schaefer).


