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Counting and probability

“I count a lot of things that there’s no need to count,”
Cameron said. “Just because that’s the way I am. But I
count all the things that need to be counted.”

Richard Brautigan, The Hawkline Monster: A Gothic
Western

Most of this talk is about counting, not probability. But, as we
know, there is a close connection between being able to count a
set and being able to choose one of its elements at random; so
this is a preliminary to studying typical properties of elements
of the set.
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Acyclic orientations

In this talk, G will be a graph with n vertices and m edges; the
vertex and edge sets are V and E respectively. All graphs are
simple.

An acyclic orientation of a graph is an orientation of the edges
of the graph such that there are no directed cycles. I will often
abbreviate “acyclic orientation” to a.o.
Any acyclic orientation can be obtained by ordering the
vertices and then orienting all edges from the smaller to the
greater vertex.
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Acyclic orientations and colourings

Any acyclic orientation gives rise to a colouring. Colour the
sources with the first colour; then delete them and repeat.

The colour given to a vertex is the length of the longest directed
path ending at the vertex. So the total number of colours used
is equal to the longest directed path.
Depending on the a.o. chosen, this can take any value from the
chromatic number of the graph up to the length of the longest
path.
It would be interesting to know something about the
distribution of the number of colours over all a.o.s of a given
graph.
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Moving between acyclic orientations

Define the distance between two a.o.s of G to be the number of
edges oriented differently in the two a.o.s.

Proposition

I Any a.o. of G has an edge whose orientation can be flipped while
preserving the acyclic property.

I Any a.o. can be transformed into any other by flipping (in some
order) just those edges which are oriented differently in the two
orientations; so the distance is equal to the minimum number of
edge flips required to transform one into the other.
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A Markov chain

The edge flips define a Markov chain on the set of a.o.s of G:
choose a random edge and flip it if possible. (This chain is
irreducible and aperiodic. But its limiting distribution is not
uniform.)

It would be nice to modify this Markov chain so as to bias it
towards a.o.s which give rise to colourings with few colours,
but we have not succeeded in doing this.
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Counting acyclic orientations

The number of a.o.s of a given graph is an interesting graph
parameter.

Theorem (Stanley)

The number of acyclic orientations of G is equal to (−1)nPG(−1),
where PG is the chromatic polynomial of G.
So it is an evaluation of the Tutte polynomial.
It is hard to compute exactly, and it is currently unknown
whether there is an efficient approximation procedure (fpras)
for it.
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Distribution: average

Given n and m, what is the distribution of the number of a.o.s
of graphs with n vertices and m edges?

Let a(n, m) be the number of acyclic digraphs with n labelled
vertices and m arcs, and An(x) the generating polynomial
n(n−1)/2

∑
m=0

a(n, m)xm.

Theorem (Bender, Richmond, Robinson, Wormald)

An(x) =
n

∑
i=1

(−1)i+1
(

n
i

)
(1 + x)i(n−i)An−i(x).

Now a(n, m)
/(n(n − 1)/2

m

)
is the average number of a.o.s.

and is easily computed.
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Distribution: minimum

Theorem (Linial)

The graph with n vertices and m edges having the smallest number of
acyclic orientations is constructed as follows: Let r(r − 1)/2 be the
largest triangular number not exceeding m; take a complete graph on
r vertices, and add a new vertex joined to q = m − r(r − 1)/2
vertices in the clique. The number of a.o.s is q!(r + 1).

Note that the minimum is linear between consecutive
triangular numbers.
We have a new proof of this theorem which shows that the
same graphs are also extremal for several further graph
parameters.
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Distribution: maximum

Finding the maximum number of a.o.s of a graph with n
vertices and m edges is considerably more challenging.

A Túran graph is a complete multipartite graph, the sizes of
whose parts differ by at most 1. Turán graphs famously arise as
the graphs with the largest number of edges subject to
forbidding complete graphs of given size.

Conjecture

If n and m are such that a Turán graph with n vertices and m edges
exists, then the Turán graph has the maximum number of acyclic
orientations.
This is proved only in the case where m is only slightly less
than n(n − 1)/2: if we only omit a few edges from the complete
graph, they should be disjoint.
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Some numbers

vertices 2 4 6 8 10 12
edges 1 4 9 16 25 36

Min # a.o.s 2 12 96 1440 25200 362880
Ave # a.o.s 2 12 167 3851 156636 9312017

Max # a.o.s? 2 14 230 6902 329462 22934774

Table: Numbers of acyclic orientations of graphs with m = n2/4

The values given for the maximum are those suggested by the
conjecture. Robert Schumacher computed some of these, and
looked them up in the On-Line Encyclopedia of Integer
Sequences. The references led to the following discussion.
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Complete bipartite graphs

There is a formula for the number of acyclic orientations of a
complete bipartite graph.

Theorem
The number of acyclic orientations of Kn1,n2 is

min(n1,n2)+1

∑
k=1

((k − 1)!)2S(n1 + 1, k)S(n2 + 1, k).

Here S(a, b) is the Stirling number of the second kind, the
number of partitions of a set of size a into b parts.
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Proof

Let the bipartition of the vertex set of the graph have parts A
and B, which we think of as coloured amber and blue.

Any acyclic orientation is defined by a sequence
(A1, B1, . . . , Ak, Bk), where the Ai form a partition of A and the
Bi of B, and all parts are non-empty except possibly A1 and Bk.
To get round having to consider four cases, we add a new
vertex a0 to A1 and a new vertex b0 to Bk. So we get an acyclic
orientation by first choosing partitions (which can be done in
S(n1 + 1, k)S(n2 + 1, k) ways), ordering them with A1 first and
Bk last (in ((k − 1)!)2 ways), and then removing the added
vertices a0 and b0.
Finally, sum over k. The result is as in the theorem.
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Poly-Bernoulli numbers

This is only a very brief introduction to these numbers, which
were introucd by Masanobu Kaneko in 1997.

Kaneko gave the following definitions. Let

Lik(z) =
∞

∑
m=1

zm

mk ,

and let
Lik(1 − e−x)

1 − e−x =
∞

∑
n=0

B(k)
n

xn

n!
.

The numbers B(k)
n are the poly-Bernoulli numbers of order k.

He gave a couple of nice formulae for the poly-Bernoulli
numbers of negative order, of which the one on the next slide is
relevant here:
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Kaneko’s Theorem

Theorem (Kaneko)

B(−k)
n =

min(n,k)

∑
j=0

(j!)2S(n + 1, j + 1)S(k + 1, j + 1).

This formula has the (entirely non-obvious) corollary that these
numbers have a symmetry property: B(−k)

n = B(−n)
k for all

non-negative integers n and k.
It also shows that the number of acyclic orientations of Kn1,n2 is
B(−n2)

n1 .
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Lonesum matrices

This is closely related to recent work of Chet Brewbaker (2008).

A zero-one matrix is a lonesum matrix if it is uniquely
determined by its row and column sum.

Clearly a lonesum matrix cannot contain either
(

1 0
0 1

)
or(

0 1
1 0

)
as a submatrix (in not necessarily consecutive rows or

columns). (If one such submatrix occurred it could be flipped
into the other without changing the row and column sums.)
Ryser showed that, conversely, a matrix containing neither of
these is a lonesum matrix.
Brewbaker showed that the number of n1 × n2 lonesum
matrices is given by our earlier formula.
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The connection, 1

The number of n1 × n2 lonesum matrices is equal to the number
of a.o.s of Kn1,n2 .

Number the vertices in the bipartite blocks from 1 to n1 (in A)
and from 1 to n2 (in B). Now given an orientation of the graph,
we can describe it by a matrix whose (i, j) entry is 1 if the edge
from vertex i of A to vertex j of B goes in the direction from A to
B, and 0 otherwise. The two forbidden submatrices for
lonesum matrices correspond to directed 4-cycles; so any a.o.
gives us a lonesum matrix.
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lonesum matrices correspond to directed 4-cycles; so any a.o.
gives us a lonesum matrix.



The connection, 2

Conversely, if an orientation of a complete bipartite graph
contains no directed 4-cycles, then it contains no directed cycles
at all.

For suppose that there are no directed 4-cycles, but there is a
directed cycle (a1, b1, a2, b2, . . . , ak, bk, a1). Then the edge
between a2 and b2 must be directed from a1 to b2, since
otherwise there would be a 4-cycle (a1, b1, a2, b2, a1). But then
we have a shorter directed cycle (a1, b2, a3, . . . , bk, a1).
Continuing this shortening process, we would eventually
arrive at a directed 4-cycle, a contradiction.
(This simply says that the cycle space of the complete bipartite
graph is generated by 4-cycles.)
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Some questions

1. Is there are fully polynomial randomized approximation
scheme (fpras) for the number of acyclic orientations of a
graph?

2. What can be said about the length of the longest directed
path in a random acyclic orientation (equivalently, the
number of colours in the corresponding colouring)?

3. Describe the graphs (with given numbers of vertices and
edges) which have the maximum number of acyclic
orientations.

4. What can be said about the distribution of the number of
acyclic orientations of graphs with n vertices and m edges?
Can its variance be calculated?

5. Is there a formula for the number of acyclic orientations of
a complete multipartite graph (in terms of the sizes of the
parts)?
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6. Are there analogues for acyclic orientations of correlation
and anticorrelation results for spanning trees or forests?
Any given edge has probability 1

2 of having each direction
in a random acyclic orientation, but are there any general
results on correlation, perhaps in terms of the distance
between the edges? Or any results that hold for particular
graphs?

In the case of complete bipartite graphs, we are in a good
position because all non-incident edge pairs are alike, and we
have a formula for the number of a.o.s.

7. How is the number of binary matrices with given row and
column sum distributed, over all feasible pairs of
row/column sum tuples?
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