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The purpose of this talk is to define the entropy function of a
family of random variables on a finite probability space, and to
prove the theorem that, up to a multiple, any such function can
be approximated by one associated with a family of subgroups
of a finite group.
Terence Chan, at the workshop on “Information Flows and
Information Bottlenecks”, at QMUL in late 2012, stated the
theorem without proof in his talk, and sketched the proof on
the common room table; here are the details.



Finite probability spaces

A finite probability space consists of a finite set Ω with a
function P from the subsets of Ω to the real numbers satisfying
(simplified versions of) Kolmogorov’s axioms:

I P(A) ≥ 0 for any A ⊆ Ω;
I P(Ω) = 1;
I If A∩ B = ∅ then P(A∪ B) = P(A) + P(B).

Of course it can be specified by defining P on elements of Ω
(these values being non-negative and summing to 1) and then
letting P(A) be the sum of the values of P over the elements of
A.
A probability space Ω is uniform if P(a) is constant for a ∈ Ω
(the constant, of course, being 1/|Ω|).
While the origin of probability theory is usually credited to
Pascal, it was Fermat who proposed this model.



Random variables

Voltaire said of the Holy Roman Empire that it is “neither holy,
nor Roman, nor an empire”.
In a similar way, a random variable is neither random nor a
variable; it is a function on the set Ω. In what follows, we are
not interested in the codomain of the function.
A random variable f defines a partition F = {A1, . . . , Ak} of Ω
called the kernel of f : it is the partition of Ω into inverse images
of points in the range of f .



Entropy

Let F = {A1, . . . , Ak} be a partition of Ω. Let pi = P(Ai), and
define

h(p1, p2, . . . , pk) = −
k

∑
i=1

pi log pi.

The base of the logarithms is not too important; it is usually
taken to be either e or 2, or in coding theory to be the size of the
alphabet. Then the entropy of the partition F (or of the random
variable f ) is defined to be H(F) = h(p1, p2, . . . , pk).
Entropy is a measure of our uncertainty about the value of f . In
particular, if f takes k different values, then H(f ) ≤ log k, with
equality if and only if p1 = p2 = · · · = pk = 1/k. (We call a
random variable satisfying the last condition uniform.)



Joint random variables

Now let f1, f2, . . . , fr be random variables on Ω; suppose that the
codomain of fi is Si. For I ⊆ {1, . . . , r}, we define the joint
random variable fI to be the function from Ω to ∏i∈I Si defined
coordinatewise, so that the ith coordinate of fI(a) is fi(a) for
i ∈ I.
Partitions of a set are ordered by refinement; they form a lattice,
in which the meet of two partitions is their coarsest common
refinement. The partition F corresponding to the random
variable fI is the meet of the partitions corresponding to all fi for
i ∈ I:

FI =
∧
i∈I

Fi.

So, given a family of random variables, the partitions of the
probability space corresponding to the joint random variables
form the meet-semilattice generated by the partitions for the
original variables.



Entropy of joint random variables

The entropy of the joint random variables defines a point in the
positive orthant of R2r

, with one coordinate for each subset of
{1, 2, . . . , r}. Since the entropy of f∅ is 0, we can omit the first
coordinate, and regard the point as lying in R2r−1. Let Γr be the
set of all such points (arising from all r-tuples of random
variables on finite probability spaces).
We will also consider a “projective” version PΓr, where we
represent a point by the line through the origin (a point in
projective space of dimension 2r − 2). (This makes sense
because the base of the logarithms is arbitrary.)
A big problem of information theory is:

Problem
Describe the set Γr.



Group random variables

Now let G be a finite group; we regard it as a uniform
probability space. (This corresponds to the instruction “choose
an element of G uniformly at random”.) If K is any subgroup of
G, then K defines a random variable FK which maps each
element g ∈ G to the right coset Kg of K which contains it.
This is a uniform random variable, so its entropy is log |G : K|,
where |G : K| is the index of K in G (the number of cosets). We
denote it by fK, and the corresponding partition of G (into right
cosets of K) by FK.
We call fk a group random variable.



Group families

If K1, . . . , Kr are subgroups of G, then the joint random variable
of fKi for i ∈ I ⊆ {1, . . . , r} is just fKI , where KI is the subgroup

KI =
⋂
i∈I

Ki,

and the corresponding partition is FKI , the coset partition of Ki.
We will say that a family of random variables is a group family
if it is defined in this way by a family of subgroups of a finite
group. We will, by abuse of notation, often write Fi and FI in
place of FKi and FKI in this situation.



The main theorem

Theorem
The projective point corresponding to any point of Γr can be
approximated arbitrarily closely by a group family of random
variables.

Corollary

Any linear inequality satisfied by the entropy functions of all group
families of random variables is satisfied by all entropy functions.
In what follows, I prove this theorem. We begin with a
triviality:

Lemma
Any point of Γr can be approximated arbitrarily closely by a point
arising from a family of random variables all of whose probabilities are
rational.



Multinomial coefficients

Let m1, . . . , mk be positive integers summing to n. The

multinomial coefficient
(

n
m1, m2, . . . , mk

)
is defined to be

n!/(m1!m2! · · ·mk!), the number of choices of subsets
A1, A2, . . . , Ak, with |Ai| = mi for i = 1, . . . , k, which form a
partition of {1, . . . , n}.

Lemma
Let p1, p2, . . . , pk be positive rational numbers summing to 1. Then

log
(

n
p1n, p2n, . . . , pkn

)
∼ nh(p1, p2, . . . , pk)

as n→ ∞ through values such that all pin are integers.
Warning: The symbol ∼ is used here in the sense of
asymptotics, that is, f ∼ g means that f /g→ 1; not in the
probability sense (same distribution).



Proof of the lemma

The proof is straightforward from a weak form of Stirling’s
formula:

log n! = n log n− n + O(log n).

Then

log
(

n
p1n, . . . , pkn

)
= n log n− n−∑ pin log pin +

+ ∑ pin + O(log n)

= n log n(1−∑ pi)− n ∑ pi log pi + O(log n)
= nh(p1, . . . , pk) + O(log n).



Construction

Now suppose we are given a family F of r random variables on
the probability space Ω. By Lemma 3, we may assume that the
probabilities associated with the random variables and their
joint variables are all rational.
Next we show that we may assume that Ω is a uniform
probability space. First we factor out the partition defined by
the joint random variable corresponding to all the variables in
F . Now choose n such that, for every probability p which
occurs, np is an integer. Finally, if a point of Ω has probability p,
replace it by np points, each with probability 1/n.



An example

This example shows what is going on. The first table is the joint
distribution of two random variables, while the second and
third show two uniform spaces which give the same
probabilities and hence the same entropies.

1
2

1
4
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4

•• •
•

•••• ••
••

Replacing each point in the middle picture by s points, for a
fixed positive integer s, would give another space with the
right properties.



Young subgroups of the symmetric group
Let G = Sn be the symmetric group on the set {1, . . . , n}. For
any partition P of {1, . . . , n}, the corresponding Young
subgroup SP consists of all permutations which fix the parts of
P setwise.
Note that we have

SP ∩ SQ = SP∧Q,

where P∧Q is the meet of P and Q in the partition lattice. So
the joint random variables corresponding to a subfamily of the
subgroups gives the same partition (and so the same entropy)
as the random variable corresponding to the intersection of
these subgroups.
Moreover, G acts transitively on ordered partitions with given
shape, and the stabiliser of a partition is the corresponding
Young subgroup; so, if P has parts of size m1, . . . , mk, then

|Sn : SP| =
(

n
m1, m2, . . . , mk

)
.



Proof of the theorem

Given a family F of random variables defined on a uniform
probability space of size n (where we take Ω = {1, . . . , n}), we
consider the group family where G = Sn and the subgroups Hi
are the Young subgroups associated with the partitions.
The entropies in the group family are logarithms of
multinomial coefficients; by Lemma 4, these (when divided by
n) approximate the entropies of the given family of random
variables.
Moreover, as we observed earlier, we can make n as large as we
like by repeating each point a fixed number of times. So the
theorem is proved.



Example

To return to our example: suppose that we repeat each point s
times, and number the points from left to right and top to
bottom. Then 4 is replaced by 4s, and we have for the group
family

H(F1) = log
(

4s
3s, s

)
∼ 4sh( 3

4 , 1
4 ),

H(F2) = log
(

4s
2s, 2s

)
∼ 4sh( 1

2 , 1
2 ),

H(F12) = log
(

4s
2s, s, s

)
∼ 4sh( 1

2 , 1
4 , 1

4 ).



Some problems

Problem

I What families of groups other than symmetric groups give rise to
entropy functions which can projectively approximate any
entropy function?

I Given a family of groups, what are the restrictions on the
entropy functions arising?

For example, Terence Chan pointed out that, for abelian
groups, a linear inequality holds for the entropy functions
which is not valid in general (the Ingleton inequality).



Are these results useful to group theorists?

Remark
We can reverse the arguments to use entropy inequalities to give
multiplicative inequalities for the indices of subgroups and their
intersections.
For example, the basic Shannon inequality

H(f1, f2) ≤ H(f1) + H(f2)

gives, for subgroups K1, K2 of a group G, the well-known result

|G : K1 ∩ K2| ≤ |G : K1| · |G : K2|,

or more briefly

|G| · |K1 ∩ K2| ≥ |K1| · |K2|.



For example

More interesting are the recently discovered non-Shannon
entropy inequalities, whose consequences for groups have not
yet been investigated.
The first non-Shannon entropy inequality was found by Zhang
and Yeung in 1998. It asserts that

H(f1, f2) + H(f1, f3) + 3((H(f2, f3) + H(f2, f4) + H(f3, f4))
≥ 2H(f2) + 2H(f3) + H(f4) + H(f1, f4) + H(f1, f2, f3) + 4H(f2, f3, f4)

or

|K1 ∩ K2| · |K1 ∩ K3| · (|K2 ∩ K3| · |K2 ∩ K4| · |K3 ∩ K4|)3

≤ (|K2| · |K3|)2 · |K4| · |K1 ∩ K4| · |K1 ∩ K2 ∩ K3| · |K2 ∩ K3 ∩ K4|4.



A question

By Chan’s Theorem, the group-theoretic inequality on the last
slide is equivalent to the entropy ineequality above it.
And yet the paper of Zhang and Yeung was a very important
breakthrough. Had some group theorist found the other
inequality, would it even have been regarded as worth
publishing?
A prize to anyone who can find a group-theoretic application of
it, or any of the hundreds of other non-Shannon inequalities
that have been found in the context of network coding.


