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The party problem

Six people are at a party. Show that either there are three of
them, any two of whom know each other, or there are three
people, no two of whom know each other.

The phrase “Show that . . . ” shows that we are being asked to
do some mathematical reasoning. So the first thing we need to
do is to be more precise about our terms.



Using the mathematician’s prerogative to use words with any
defined meaning, we will abbreviate “any two know each
other” to “mutual friends”, and “no two know each other” to
“mutual strangers”. We assume also that friendship is an
irreflexive symmetric relation: that is,

I nobody is his/her own friend; and
I if A is B’s friend, then B is A’s friend.

Thus friendship is represented by a subset of the set of
2-element subsets, and “strangership” is the complementary
subset. We can represent this in a diagram by drawing a red
edge between two friends, and a blue edge between two
strangers.



Five people do not suffice

First, observe that five people do not suffice for the assertion of
the party problem. For they might form the configuration
shown:
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There are no three mutual friends and no three mutual
strangers.



Six people do suffice

So here is the proof that six people are enough for the statement
to be true. I will call the people A, B, C, D, E, F, and talk about
“red edges” and “blue edges” rather than “friends” and
“strangers”.
Consider person A. Either the number of red edges containing
A is at least three, or the number of blue edges containing A is
at least three. (For otherwise A is in at most two red and two
blue edges, so at most four edges altogether, which is not so.)
Suppose there are three red edges, which might as well be AB,
AC and AD. If any two of B, C, D are joined by red edges (say
BC), we have a red triangle ABC. But if none of them are, then
we have a blue triangle BCD.
The case of three blue edges is similar; just reverse the colours.



The party problem generalised

It is natural to ask: Is there a minimum number of people at a party
which guarantees at least four mutual friends or four mutual
strangers? Indeed there is, and the required number is 18,
though this is a bit harder to prove.
What about five or more? The answer is, we don’t know: that is,
we know that the required number always exists, but we don’t
know what it is.
It is known, for example, that the number for five mutual
friends or strangers is between 43 and 49 (that is, 49 people
suffice but 42 do not), and for six it is between 102 and 165. The
gaps get bigger as the required number of friends or strangers
increases.



The view of Paul Erdős

Paul Erdős, the most prolific mathe-
matician of the twentieth century and
one of the founders of this theory,
regarded this problem as one of the
most difficult. He said:

Suppose aliens invade the earth and threaten to obliterate it
in a year’s time unless human beings can find the Ramsey
number for red five and blue five. We could marshal the
world’s best minds and fastest computers, and within a year
we could probably calculate the value. If the aliens
demanded the Ramsey number for red six and blue six,
however, we would have no choice but to launch a
preemptive attack.



Ramsey’s Theorem

The party problem is a special case of Ram-
sey’s Theorem: not only the size of the subset
we look for but also the size of the sets be-
ing coloured and the number of colours are
arbitrary.

Theorem
Let k, l, r be positive integers with k ≤ l. Then there is a number n
with the following property:

Given a set X with n points, if we assign colours c1, . . . , cr
arbitrarily to the k-element subsets of X, then there will
exist an l-element subset, all of whose k-element subsets
have the same colour.

The smallest number n with this property is the Ramsey
number R(k, l, r). So we saw that R(2, 3, 2) = 6 and
R(2, 4, 2) = 18.



The Pigeonhole Principle

There is one special case where we know everything: the case
k = 1. In this case, colouring the single elements with r colours
is equivalent to putting them into r pigeonholes. If we have n
pigeons altogether, with n ≥ r(l− 1) + 1, then some pigeonhole
must contain at least l pigeons; whereas r(l− 1) would not
suffice since we could put l− 1 in each pigeonhole. So
R(1, l, r) = r(l− 1) + 1.
In Scotland, pigeons are called “doos” and they live in a
“doocot”:



Approximation

Here is an application of the pigeonhole principle.

Theorem
Any irrational number α can be approximated to order 2 by rational
numbers; this means that there are infinitely many rational numbers
p/q for which ∣∣∣∣α− p

q

∣∣∣∣ < 1
q2 .

It is known that some irrational numbers, such as the golden
ratio (1 +

√
5)/2, cannot be approximated to any order higher

than 2. (The best rational approximations to the golden ratio
are the quotients of successive Fibonacci numbers.)



Proof

We show that, given any number n, we can find p/q with q > n
such that |α− p/q| < 1/(nq). To see this, we let {x} denote the
fractional part of the number x, that is, x minus the integer
immediately below.
Divide the unit interval into n equal subintervals. Now
consider the rational numbers {α}, {2α}, {3α}, . . . , {(n + 1)α}.
Since there are n + 1 numbers in n intervals, there must be two
of them in the same interval: so |{iα} − {jα}| < 1/n. Putting
q = |i− j|, we have |qα− p| < 1/n for some integer p, so that
|α− p/q| < 1/(nq). Since q < n, we have |α− p/q| < 1/q2.
Why are there infinitely many such numbers? If we have found
finitely many, we can choose n large enough that 1/n is smaller
than |q′α− p′| for any of the fractions p′/q′ found so far, and so
the p/q we obtain is a new fraction; we can go on as long as we
like!



An example

This is what happens if we take α =
√

2 and n = 10.

r{α} r{2α}r{3α} r{4α}r{5α} r{6α} r{7α}r{8α} r{9α}r{10α} r{11α}

We see that the fractional parts of
√

2 and 6
√

2 are within 1/10;
so 5
√

2 differs from the nearest integer 7 by less than 1/10, that
is, |
√

2− 7/5| < 1/50.



Ramsey theory

Ramsey, who was a logician and mathematical economist,
published his theorem in 1930 in the context of mathematical
logic. He died in the same year. His younger brother later
became the Archbishop of Canterbury.
In the early 1930s, a group of young Hungarian
mathematicians including Paul Erdős, George Szekeres, Esther
Klein, and Paul Turán rediscovered Ramsey’s theorem, but
developed it into a much wider theory, which applies not just
to sets and subsets but to structures of any kind. This is now
referred to as Ramsey theory.
The slogan for Ramsey theory, coined by Theodore Motzkin, is
“Complete disorder is impossible”: in any structure, no matter
how disordered, one can find small patches of order (such as
groups of mutual friends in the party problem).



Complete disorder is impossible
The stars are scattered roughly randomly on the sky. But when
we look at the sky, our attention is drawn to small groups, such
as the three stars in Orion’s belt (Alnitak, Mintaka and
Alnilam) which appear to form a line, although at vastly
different distances from us.

The line also appears to pass through the bright stars Sirius (in
Canis Major) and Aldebaran (in Taurus).



Generalization

One advantage of generalization in mathematics is that
sometimes the more general problem turns out to be easier
than the special case.
Even if this doesn’t happen, it may be that the generalization
suggests other special cases which can be solved.
One of these is a theorem of Erdős and Szekeres about
permutations, to which we now turn.



Permutations

There are several ways of thinking of permutations. Today it is
most common to say that a permutation is a bijective function
from a set to itself; we compose permutations (as functions)
and they form a group (the symmetric group).
But to Galois (arguably the inventor of group theory) in 1830, a
bijective function was a substitution; a permutation is the
resulting re-ordering of the set being permuted, which we
usually take to be the set {1, 2, . . . , n}.
For example, (2, 5, 1, 3, 4, 6) is a permutation of (1, 2, 3, 4, 5, 6);
the corresponding substitution maps 1 to 2, 2 to 5, 3 to 1, and so
on.



We can represent permutations graphically by plotting the
points (x, y) where y is the number standing in position x in the
permutation.
For example, the permutation (2, 5, 1, 3, 4, 6) is shown in this
picture:
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The Erdős–Szekeres Theoreom

In the permutation (2, 5, 1, 3, 4, 6), the numbers 2, 3, 4, 6 form an
increasing subsequence of length 4 (shown in red in the
diagram). There is no decreasing subsequence of length greater
than 2. Does any permutation contain a long increasing or
decreasing sequence?

Theorem (Erdős–Szekeres)

Given a positive integer k, there exists n such that any permutation of
{1, . . . , n} contains either an increasing or decreasing sequence of
length k. The smallest k for which this is true is n = (k− 1)2 + 1.
I will show you how this follows from the party problem – but
this approach is not going to yield an exact value for n – and
then I will show you a different proof which gives the exact
result.



First proof

There are two kinds of pairs of elements in a permutation p,
increasing and decreasing. Colour the edge {i, j} (with i < j)
red if p(i) < p(j) (so the pair p(i), p(j) is increasing) and blue if
p(i) > p(j) (so the pair p(i), p(j) is decreasing).
A set of k points with all edges red is an increasing
subsequence; a set of k with all edges blue is a decreasing
subsequence.
By Ramsey’s Theorem, if n ≥ R(2, k, 2) (the number of people
required for a party to have at least k mutual friends or at least
k mutual strangers), there is an increasing or decreasing
subsequence of length k.
So for k = 3, 4 the theorem shows that n = 6, resp. n = 18,
points suffice. But the tailpiece to the theorem tells us that the
best possible values should be n = 5, resp. n = 10.



Second proof

The first proof reduced the problem to a known, but difficult,
result. The second attacks it directly.
Suppose that n = (k− 1)2 + 1, and we are given a permutation
p of {1, . . . , n} which contains no increasing sequence of length
k. Now we put the points into k− 1 pigeonholes P1, P2, . . . , Pk−1
by the following rule: i ∈ Pl if the longest increasing sequence
which ends in position i contains l terms.
By the Doocot Principle, one of the pigeonholes, say Pm,
contains at least k numbers. Suppose that i1, . . . , ik ∈ Pm, where
i1 < · · · < ik.
Now xi1 , xi2 , . . . , xik is a decreasing sequence of length k. For
suppose that, say, xi1 < xi2 . There is an increasing sequence of
length m ending with xi1 in position i1; adding xi2 to the end
gives a sequence of length m + 1, which contradicts the fact that
the longest increasing sequence ending at xi2 is also m.



Here is the argument in pictorial form:
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We put i1 and i2 in pigeonhole P3 because they are the ends of
increasing sequences of length 3. But if xi1 < xi2 then i2 should
have gone into pigeonhole P4.



Why (k− 1)2 + 1 is best possible

Here is an example with n = 9 containing no increasing or
decreasing sequence of length 4: (7, 8, 9, 4, 5, 6, 1, 2, 3). I hope
you can see how to generalize this to any number k, to show
that (k− 1)2 is not enough.
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Random permutations

If a permutation has an increasing sequence of length k, then
the permutation obtained by reading it in reverse has a
decreasing sequence of length k. Since every permutation has
an increasing or decreasing sequence of length at least
1 +
√

n− 1, we see that at least half of all permutations have an
increasing sequence of this length.
So the average length of the longest increasing sequence in a
random permutation is at least (1 +

√
n− 1)/2.

The value given by this simple argument is within a constant
factor of the correct result. It has been shown by Baik, Deift and
Johansson that the average length is asymptotically 2

√
n. This

leads rapidly into deep mathematical waters, where we meet
interesting creatures such as the Tracy–Widom distribution and
largest eigenvalue of random unitary matrices.
Deep or not, I am going to tell you a little bit more of this
fascinating story . . .



Young diagrams and tableaux
A Young diagram is a collection of n boxes arranged into rows,
aligned on the left, so that the lengths of the rows are
non-increasing.
A Young tableau is a Young diagram with the numbers 1, . . . , n
written into the boxes so that the numbers in any row or
column increase.

1 2 4
3 6
5 7

Let fλ be the number of Young tableaux with shape λ, that is,
the number of ways of putting in the numbers 1, . . . , n so that
the rows and columns increase. A remarkable relation holds:

∑
λ

f 2
λ = n!.

Here the sum is over all Young diagrams λ.



The Robinson–Schensted algorithm

The formula ∑ f 2
λ = n! says that the number of pairs of tableaux

with the same shape is equal to the number of permutations.
The proof involves taking a permutation and “decoding” it into
a pair of tableaux of the same shape. It is straightforward but a
bit time-consuming to explain in detail, so I will do an example.
We start with the permutation (2, 3, 1), and read its elements
one at a time.

1

2

1 2

2 3

3
1 2

2
1 3

At the third stage, the number 1 “bumps” 2 down to the second
row. The second tableau records the appearance of the boxes.



Consequences

The Robinson–Schensted algorithm has a couple of simple but
profound consequences:

I The longest increasing sequence in a permutation is equal
to the length of the first row of the corresponding Young
diagram (and the algorithm gives an efficient way to find
this number for a given permutation).

I The inverse permutation produces the same two Young
tableaux in the opposite order. This means that a pair
consisting of two identical tableaux corresponds to a
permutation which is equal to its inverse; so the number of
self-inverse permutations is

∑
λ

fλ.



Random permutations and random diagrams

Since ∑ f 2
λ = n!, we see that we can define the probability of a

Young diagram λ to be f 2
λ/n!; these probabilities then add up to

1. (This is known as the Plancherel measure.)
It follows from our argument that choosing a random diagram
according to this measure is equivalent to choosing a random
permutation (uniformly), applying the Robinson–Schensted
algorithm to it, and taking the shape of the resulting diagrams.
So we see that the length of the first row in a random Young
diagram (according to this procedure) is about 2

√
n.



Asymptotics
It has been shown, independently by Kerov and Vershik and by
Logan and Shepp, that, in the asymptotic limit of large n, the
random Young diagram has a characteristic shape (shown here
rotated 45◦ for convenience):


