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Is infinity a number?

Last month, my grandson Lex asked
me, “Is infinity a number?”

When children compete to name larger and larger numbers,
sooner or later someone will say “infinity”. Is that a valid
answer, and if so, is it the largest possible number (and so bring
the contest to a halt)?
It turns out that this is the key question in the modern
mathematical approach to infinity.



What should numbers do?

The things we do with numbers include
I counting (with whole numbers) or measuring (with real

numbers);
I comparing magnitudes;
I adding and multiplying;
I subtracting and dividing.

If there are infinite numbers, they should be usable for at least
some of these things.



Counting

“I count a lot of things that there’s no need to count,”
Cameron said. “ Just because that’s the way I am. But
I count all the things that need to be counted.”

Richard Brautigan, The Hawkline Monster: A Gothic
Western, Picador, 1976.

The really fundamental thing about numbers is that we use
them to count things. Counting is more basic than other
properties of numbers such as arithmetic or comparison.
When we count the apples in a bowl, or the Rollright Stones
[though legend says these can’t be counted!], we match them
up with successive numbers: “One, two, three, . . . ”.



Counting = Matching up

Georges Ifrah, in From One to Zero, tells of an American
archaeological team excavating the palace of Nuzi, near Kirkuk
in Iraq. They found a clay envelope inscribed with a list of 48
sheep and goats; inside there were 48 clay balls, which
presumably the innumerate shepherd would use to check that
his flock was complete.
The significance of the find was brought home when their
uneducated servant, sent to the market to buy chickens, was
unable to say how many chickens he had bought, but produced
a collection of pebbles, one for each chicken.

We say that two sets have the same cardinality if they can be
matched up. (Note: we haven’t said yet what cardinality is!)



Cardinal numbers

In the days when physics was less sophisticated, the standard
metre and the standard kilogram were defined by physical
objects (the distance between two marks on a rod, and a lump
of metal, respectively, made of platinum alloy). Other distances
or masses could be measured by comparing them with the
standard.
In the same way, we would like to count sets by having a
standard number for each size of set, with which other sets can
be compared. These standard numbers are called cardinal
numbers.



The cardinal number for five-element sets should be a standard
5-element set whose definition does not involve the number 5
(to avoid paradoxes). For good logical reasons we take it to be
the set {0, 1, 2, 3, 4}, the five numbers which precede 5.
There is a story that the logician Alfred Tarski, going on
holiday, looked at his luggage and said, “Zero, one, two, three,
four – good, I have all my five suitcases.”
The added advantage is that this gives us a way to construct the
natural numbers: each number is defined to be the standard set
consisting of all its predecessors.



When we reach the infinite, we have a standard set

{0, 1, 2, 3, 4, . . .}

consisting of all the natural numbers. A set which can be
matched up with this set is called countable (because we can
count its elements with the natural numbers).
Cantor introduced the notation ℵ0 (aleph-zero – “aleph” is the
first letter of the Hebrew alphabet) for this set.
The next number should have the standard set

{0, 1, 2, 3, 4, . . . ,ℵ0}

for sets obtained by adding one new element to an infinite set.
But things are not so simple . . .



Hilbert’s Hotel
Hilbert described the first of Cantor’s discoveries in terms of an
infinite hotel (which we now call Hilbert’s Hotel) with ℵ0
rooms, numbered 0, 1, 2, . . ..
One night, the hotel is completely full, when a new guest
arrives. What happens?
In a finite hotel, the guest would simply be turned away. But in
Hilbert’s hotel, the manager simply asks the guest in room 0 to
move to room 1, the guest in room 1 to move to room 2, and in
general room n to room n + 1. Everyone still has a room, but
now room 0 is free for the new guest.
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So infinity plus one is infinity; we don’t need a new number.
If infinitely many guests arrive, we move the guest in room 0 to
room 0, room 1 to room 2, and in general room n to room 2n.
Then the even numbered rooms are occupied, but the odd
numbered rooms are all free for the new guests:
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So infinity plus infinity is still infinity.



Galileo revisited

This should remind you of Galileo’s argument. Cantor boldly
went beyond the point where Galileo drew back; according to
Cantor the set of perfect squares and the set of all natural
numbers have the same cardinality, namely ℵ0.
Cantor also showed that infinity times infinity is still infinity,
and hence the paradoxical result that the number of rational
numbers (or fractions) is the same as the number of natural
numbers, even though the rational numbers lie densely on the
line while the natural numbers are spaced out evenly.
Is there a larger infinity?



A larger infinity

Cantor’s most remarkable discovery was that there is a larger
infinity: there are more real numbers (numbers represented by
infinite decimals) than natural numbers.
The proof technique has become a classic: Cantor’s diagonal
argument.
Consider what we have to do to prove this. We have to show
that, no matter how we try, we cannot match up the real
numbers with the natural numbers. In other words, if someone
comes along with a list of real numbers (x1, x2, x3, . . .), then the
list cannot contain all real numbers: we must be able to show
them a number which is not on the list. This is how it is done.
For simplicity we just consider real numbers between 0 and 1.
Even these are too numerous to match with the natural
numbers.



Cantor’s diagonal argument
Suppose the list begins like this:

x1 = 0.67473 . . .
x2 = 0.38594 . . .
x3 = 0.22222 . . .
x4 = 0.45831 . . .

and so on.
Consider the “diagonal” digits in the list. Write down the
number formed by these:

y = 0.6823 . . .

Now change every 8 into a 5, and all other digits into 8:

z = 0.8588 . . .



This number z is not in the original list. For if z = xn, then the
nth digit of z would be the same as that of xn; but this isn’t so,
since the nth digit of y was the same as that of xn, and we
changed it!
So the list was not complete.
Cantor denoted the cardinality of the set of real numbers by c.
So we can say that c > ℵ0.



The Continuum Hypothesis

Cantor asked: Is c = ℵ1? In other words, is the cardinality of
the real numbers the next largest after the natural numbers, or
could there be a subset of the real numbers of intermediate
size?
Hilbert included this in his list of 23 problems to guide the
development of mathematics in the 20th century.
The answer is not what either Cantor or Hilbert expected.



Independence of CH

The standard axioms for set theory are the Zermelo–Fraenkel
axioms ZFC (including the so-called Axiom of Choice).
Hilbert’s goal was to prove or disprove the Continuum
Hypothesis in the system ZFC.
In 1940, Gödel showed that CH could not be disproved in ZFC,
by building a model in which it holds.
In 1963, Cohen showed that it couldn’t be proved in ZFC, by
building a model in which it fails.
So we are left with a situation like that for Euclidean or
non-Euclidean geometry: either CH or not-CH is a permissible
assumption for a universe of set theory in which to do
mathematics!



Larger and larger

Cantor also discovered that the cardinal numbers grow without
limit, by an argument which “puts Russell’s paradox to creative
use”.
He showed that given any set X whatever, the power set of X
(the collection of all subsets of X) is larger.
For suppose we could match up each subset of X with an
element of X. Then the subsets could be written as Ya, for a
running through the elements of X.
Let Z = {a ∈ X : a /∈ Ya}, the set of elements not lying in the set
they label. By assumption, Z = Yb for some b. Now ask, is
b ∈ Yb? If it is, then it isn’t; and if it isn’t, then it is.
So no such labelling can exist.



Subtracting and dividing

Counting is a less precise tool for infinite sets than for
finite ones. The shepherdess who can count her flock
of a hundred sheep will know if the wolf has taken
one; but, if she has an infinite flock, she wont notice
until almost all of her sheep have been lost.

Peter J. Cameron, Combinatorics

In other words, ℵ0 − ℵ0 could be any natural number from 0
onwards, or it could be ℵ0. So subtracting infinite numbers
(and even more so, dividing them) doesn’t make a lot of sense.
This is not really a problem: we already forbid division by zero!



Other systems

There is much I haven’t discussed: for example,
I very large cardinal numbers (such as inaccessible

cardinals, Ramsey cardinals, Erdős cardinals, . . . );
I ordinal numbers (a number system in which infinity plus

one really is larger than infinity);
I surreal numbers, a system in which infinity minus one

makes sense (and there are infinitesimals as well).
But I think that is enough of this infinite topic. . .


