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Frege’s bad luck

A scientist can hardly meet with anything more
undesirable than to have the foundation give way just
as the work is finished. In this position I was put by a
letter from Mr Bertrand Russell as the work was
nearly through the press.

Gottlob Frege

What was this devastating communication?



Paradox

Frege’s work had been undermined by Russell’s Paradox. I will
say a few words about this.
Since Frege’s time, the basic objects of mathematical thought
are usually taken to be sets. Now a set just consists of some
objects gathered together into a collection – but this is not a
definition, since we have to say what a collection is, and it
becomes circular.
Russell’s paradox arises from this uncritical use of the notion of
a set.



Some paradoxes
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THIS STATEMENT

IS FALSE

We cannot assign a truth value to this statement, since if it is
true then it is false, and vice versa.
The Cretan seer Epimenides said “All Cretans are liars”, as
reported in the New Testament (Titus 1, 12):

One of themselves [the Cretans], even a prophet of their
own, said, the Cretans are alway liars, evil beasts, slow
bellies.
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THIS STATEMENT

IS TRUE

In some ways this statement is even more worrying. Since it is
not obviously contradictory, it seems innocent; but we can’t tell
whether it is true or false, since if it is true then it is true, and if
it is false then it is false.



A couple more

Here are a couple of my favourite paradoxes.
An adjective is autological if it describes itself (such as ‘short’
or ‘pentasyllabic’), and heterological if it doesn’t (such as ‘long’
or ‘trisyllabic’).
Most adjectives are heterological: consider ‘hard’, ‘soft’, ‘red’,
‘blue’. [But what about ‘fluffy’ or ‘gnarled’?]

Is ‘heterological’ heterological?

If it is, then it isn’t; and if it isn’t, then it is.



The Hypergame

We consider two-player games; the rules of the game must
determine whose move it is at any stage, and when the game is
over. A game is well-founded if any play ends after a finite
number of moves (draws are permitted).
The Hypergame is played as follows. The first player chooses a
well-founded game, and the second player then moves first in
that game. For example, the first player chooses chess, and the
second player plays white.
Is the Hypergame well-founded? Obviously yes, since a play of
the Hypergame lasts one move longer than the play of the
game chosen at the first stage.
But if it is, then the first player can choose to play the
Hypergame; then the second player goes first in the
Hypergame, and can also choose the Hypergame; and so on. So
it is not well-founded after all!



Russell’s paradox

The paradox with which Russell knocked down Frege’s
building will look familiar by now. Recall that Frege was using
the idea of a set as a basic notion.

Consider the set of all sets which are not members of
themselves. Is it a member of itself?

If yes, then no; if no, then yes.
Although this paradox was taken very seriously, it is the result
of not thinking hard enough about exactly what a set is. I don’t
have time here to describe how mathematicians overcame this
problem, but overcome it they did!



Hilbert’s programme

We must not believe those, who today, with
philosophical bearing and deliberative tone, prophesy
the fall of culture and accept the ignorabimus. For us
there is no ignorabimus, and in my opinion none
whatever in natural science. In opposition to the
foolish ignorabimus our slogan shall be:

We must know — we will know!

David Hilbert

Hilbert was firmly convinced that every mathematical problem
had a solution, and that with sufficient effort, we could find the
solution.



Gödel’s Theorem

Gödel came up with the following variant of the paradox:'
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THIS STATEMENT

IS UNPROVABLE

Of course he had to be very careful about what was meant by
“provable”. His proof involved a very ingenious procedure for
translating logical formulae into arithmetical propositions,
where they may or may not be provable.



Gödel’s proof

A little background about the language here. “Provable” and
“unprovable” refer to a formal system for carrying out proofs
in a mechanical way, as Hilbert wanted. “True” and “false”
refer to their interpretation in a given mathematical structure
(in this case, arithmetic on the natural numbers).
If the axioms for arithmetic are consistent (that is, are not
self-contradictory), then Gödel’s statement must be true; for, if
it were false, it would be provable, but a false statement cannot
be proved from consistent axioms.
Hence, since the statement asserts its unprovability, it must be
unprovable.



Using paradox

. . . there seems to be a paradox . . . this was very
thought-provoking and it led to exceptionally good
theorems later on.

John Crossley

It is often stated that Gödel’s Theorem killed Hilbert’s
programme, and showed that there cannot be certainty in
mathematics. I believe this view is quite mistaken.



Gödel’s second theorem

Hilbert was insistent on the idea that there should be a
mathematical proof of consistency of any set of mathematical
axioms. But, from his results, Gödel was able to prove that the
axioms of Russell and Whitehead (or those of Peano) for the
natural numbers, or indeed any axiom system at least as strong
as these, cannot prove its own consistency.
Does this destroy the second part of Hilbert’s program?
But why should a system be required to prove its own
consistency?



Consistency

There are two ways to prove consistency of a mathematical
theory:

I a formal proof of the type Hilbert envisaged;
I construction of a model for the theory, a mathematical

structure satisfying the axioms of the theory. (If some
object satisfies the axioms, they cannot be inconsistent!)

So, for example, someone who doesn’t believe in the
consistency of Peano’s axioms cannot believe in the existence of
the natural numbers.
In fact, an earlier theorem of Gödel (his completeness theorem
for first-order logic) says that, if we can do one of these things,
then we can do the other as well: he showed that it is possible
to construct a model of any consistent theory.



Consequences

Rather than destroying mathematics, Gödel’s theorems have
some very interesting and creative consequences.

I First, since there are statements which are unprovable from
Peano’s axioms, we can add either such a statement or its
negation to the axioms, producing two different models
for them. This is very similar to what happened in
geometry in the nineteenth century, with the discovery of
non-Euclidean geometry. Now we have non-standard
models of arithmetic. Paradoxically, these are very useful
in proving results about the standard model!

I Second, we may be able to prove consistency in a different
system.



Back to set theory

Set theory was eventually rescued from Russell’s paradox by
looking carefully at the way that the set-theoretic universe is
built up, and capturing this building process in a collection of
axioms. This was done by Zermelo, with a modification by
Fraenkel. The resulting system is referred to as ZF, and is the
most widely accepted base for mathematics.
Now it is possible to construct the natural numbers (and all the
other objects of mathematical concern) within the system ZF.
The resulting system of natural numbers is a model of Peano’s
axioms. We conclude:

The consistency of Peano’s axioms is provable in ZF.



Consistency of ZF?

Since most of our mathematics is based on ZF, it might be good
to have a proof of its consistency. Again, this cannot be done in
ZF itself, but it can be done in a stronger system, obtained by
adding a so-called large cardinal axiom.
It has to be admitted that such an axiom is not as widely
accepted as ZF itself.



Gödel and modern mathematics

At the time of Gödel’s theorem, the result caused a degree of
pessimism. Maybe the reason we can’t solve some hard
problems is that they are unsolvable?
This has not turned out to be the case. Only a tiny number of
results that people were actually interested in proving have
turned out to be unprovable on the basis of, say, the ZF axioms.
Mathematicians have gone on to prove Fermat’s Last Theorem
and the Poincaré conjecture, and to classify the finite simple
groups, and are closing in on Goldbach’s conjecture and the
Twin Primes conjecture.
There is no crisis; we can confidently repeat Hilbert’s warcry:

We must know — we will know!


