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Polytopes are objects which have combinatorial, geometric and
algebraic aspects.
I will be particularly concerned with regular polytopes, which
are generalisations of the classical regular polyhedra in 3-space.
They are polytopes which have the maximal amount of
symmetry (in a precise sense), and not surprisingly their study
has very close connections with group theory.
However, there are many questions here which haven’t been
very much considered by group theorists.
I begin with something that seems at first glance to have
nothing at all to do with polytopes, but there is a connection . . .



Independent generating sets

Let G be a finite group. A set {g1, . . . , gr} of elemets of G is
independent if none of the elements lies in the subgroup
generated by the others. It is an independent generating set if,
in addition, the whole set generates the group G.
Thus independent generating sets resemble bases for vector
spaces in elementary linear algebra. However, they do not have
the nice properties of bases such as the exchange property, and
so they are not the bases of a matroid.



In the symmetric group

Theorem (Julius Whiston, 2000)

The largest size of an independent set in the symmetric group Sn is
n− 1; equality holds if and only if the set is an independent
generating set.
In 2002, Philippe Cara and I found all the independent
generating sets of size n− 1 in Sn, for n ≥ 7. There are two
types:

I The first type consists of the transpositions corresponding
to the edges of a tree on n vertices.

I The second type contains one transposition; the other
elements are 3-cycles and double transpositions. These
will not be relevant in what follows.

There are a few extra types for small n. For example, for n = 6,
we can take images of the above types under the outer
automorphism of S6.



Subgroup lattices

Let L(G) denote the subgroup lattice of the group G.

Proposition

For any finite group G, the Boolean lattice B(r) is embeddable as a
meet-semilattice of L(G) if and only if it is embeddable as a
join-semilattice of L(G). The largest number r for which these
equivalent properties hold is equal to the size of the largest
independent subset of G.
If {g1, . . . , gr} is an independent set in G, then the subgroups
generated by its subsets form a join-semilattice of L(G)
isomorphic to B(r).
Note that the above conditions are not equivalent to the
embeddability of B(r) in L(G) as a lattice!



Polytopes

A polytope of dimension r is a generalisation of polygon (in
2 dimensions) or polyhedron (in 3 dimensions) to arbitrary
dimension.
It can be regarded as a partially ordered set (the elements are
the faces of various dimensions) in which all maximal chains
contain r + 2 elements (including a bottom element ∅ of
dimension −1 and a top element of dimension r which
represents the whole polytope). Each element can be assigned a
unique dimension, corresponding to the position it occupies in
a maximal flag. Elements of dimenion 0, 1, 2 are vertices, edges,
and faces.
The maximal chains are called flags.
We require several further conditions (see next slide).



I For i < j < k, if x, y, z are elements of dimensions i, j, k with
x ≤ y and y ≤ z, then x ≤ z.

I If x and y have dimensions i and i + 2 and x < y, then there
are just two elements z satisfying x < z < y.

I A strong connectedness condition: if F and G are two flags,
then there is a sequence of flags beginning at F and ending
at G, such that consecutive members intersect in all but one
of their elements, and that F∩G is contained in every flag
in the sequence.

The poset obtained by reversing the order is also a polytope,
called the dual of the original.
If x and y are elements of a polytope with x < y, then the
interval [x, y] = {z : x ≤ z ≤ y} is itself a polytope, of
dimension dim(y)− dim(x)− 2. In particular, if
dim(y)− dim(x) = 3, then [x, y] is a polygon.



Regular polytopes

If two flags (x−1, x0, . . . , xi−1, xi, xi+1, . . . , xr) and
(x−1, x0, . . . , xi−1, yi, xi+1, . . . , xr) differ only in the element of
dimension i, then any automorphism which fixes the first flag
also fixes the second.
Hence, using the strong connectedness property, any
automorphism which fixes a flag must fix every flag, and hence
is the identity.
A polytope is regular if the automorphism group acts
transitively on the flags. In this situation, the action of the
group is regular: there is a bijection between flags and
automorphisms. (We fix a reference flag F, and then identify F′

with the unique automorphism mapping F to F′.
If a polytope is regular, then for any i, if dim(x) = i− 1,
dim(y) = i + 2, and x < y, then [x, y] is a pi-gon, where pi
depends on i but not on x and y. The vector (p0, p1, . . . , pr−1) is
the Schläfli symbol of the polytope.



String C-groups

Because of the correspondence between the set of flags and the
automorphism group G of a polytope, it is possible to translate
everything into the group. We will see that the existence of a
regular polytope is equivalent to a sequence of group elements
with certain properties.
To motivate this, consider the cube.
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Our reference flag is (∅, v, e, f , C) (where C denotes the cube).
Let sv, se and sf be the automorphisms mapping it to
(∅, v′, e, f , C), (∅, v, e′, f , C) and (∅, v, e, f ′, C) respectively.
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Now sv maps v′ back to v, and so s2
v = 1; similarly s2

e = s2
f = 1.

Also svse rotates the square face f one step clockwise, and so
(svse)4 = 1. Similarly (sesf )

3 = 1. And sv and sf both fix e, and
so they commute: (svsf )

2 = 1.



More generally, we define a string C-group to be a finite group
generated by elements s0, s1, . . . , sr−1 satisfying the conditions

I s2
i = 1.

I si and sj commute if |i− j| > 1 (the string condition).
I For I ⊆ {0, . . . , r− 1}, let SI denote the subgroup generated

by {si : i ∈ I}. Then SI ∩ SJ = SI∩J for any I and J (the
intersection condition).

Theorem
The existence of a regular polytope with automorphism group G is
“equivalent” (in a suitable sense) to a representation of G as a string
C-group.



Note that the order of sisi+1 is the ith component of the Schläfli
symbol of the polytope.
We do not insist that si and sj fail to commute if |i− j| > 1. In
other words, we allow degenerate polytopes where some of the
polygons are digons. This might seem to make things harder,
but actually makes them much easier. The subgroup generated
by a subset of {s0, . . . , sr−1} is a string C-group in its own right,
so we have the possibility of induction!
Also, we do not assume that the orders of the si and sisj give a
presentation of a group. (If they do, then the group is a Coxeter
group.)
Finally, the intersection condition shows that {s0, . . . , sr−1} is an
independent generating set for G. Indeed, it is stronger: it is
equivalent to the condition that the map I 7→ GI embeds the
Boolean lattice B(r) as a sublattice of the subgroup lattice L(G)
of G.



The symmetric group, 1

It follows from Whiston’s theorem that the dimension of a
polytope with autmorphism group Sn is at most n− 1. It
further follows from the theorem of Cameron and Cara that
there is a unique such polytope of rank n− 1. (The condition
that generators are involutions rules out the second type; the
string condition shows that the tree is a string.) The generators
are si = (i + 1, i + 2) for i = 0, . . . , n− 2.
The corresponding polytope is the regular (n− 1)-simplex,
whose faces are all the subsets of {1, . . . , n}.



The symmetric group, 2

Fernandes, Leemans and Mixer asked about regular polytopes
of smaller dimension r with group Sn. They computed the
following table:

n\r 3 4 5 6 7 8 9 10 11 12 13
5 4 1 0 0 0 0 0 0 0 0 0
6 2 4 1 0 0 0 0 0 0 0 0
7 35 7 1 1 0 0 0 0 0 0 0
8 68 36 11 1 1 0 0 0 0 0 0
9 129 37 7 7 1 1 0 0 0 0 0
10 413 203 52 13 7 1 1 0 0 0 0
11 1221 189 43 25 9 7 1 1 0 0 0
12 3346 940 183 75 40 9 7 1 1 0 0
13 7163 863 171 123 41 35 9 7 1 1 0
14 23126 3945 978 303 163 54 35 9 7 1 1



We see the entries 1 for r = n− 1 corresponding to the regular
simplices, and we have seen that there are no more. Note also
the entries 1 for r = n− 2, n ≥ 7; 7 for r = n− 3, n ≥ 9; 9 for
r = n− 4, n ≥ 11; and 35 for r = n− 5, n ≥ 13.
This suggests the conjecture:

Conjecture

Given k, there is a number N(k) such that, for n ≥ 2k + 3, the
number of regular polytopes of dimension n− k with automorphism
group Sn is N(k).
Fernandes, Leemans and Mixer have established this conjecture
for k ≤ 4, with the values of N(k) given above.



The alternating groups

We saw that regular polytopes with a given group (like Sn) can
be studied by induction, using the fact that any subset of the
generators of the string C-group themselves generate a smaller
string C-group.
Fernandes, Leemans and Mixer examined the alternating group
An. They conjectured that the largest dimension of a regular
polytope with group An is n/2 + 1, with equality only for
n ≡ 2 (mod 4). They managed to construct examples meeting
the conjectured bound.
This, incidentally, shows that there is a big difference between
largest dimension of a polytope with group G, and largest
independent generating set for G (which is n− 2 for G = An).



Other subgroups of Sn
My contribution to this problem, after working intermittently
with Dimitri Leemans on this, was the following theorem.
(“Number” refers to the list of transitive groups of this degree
in Magma.)

Theorem
A regular polytope of rank r whose group G is isomorphic to a
transitive subgroup of Sn other than Sn or An satisfies one of the
following:

I r ≤ n/2.
I n ≡ 2 mod 4, r = n/2 + 1 and G is C2 o Sn/2. The generators

are explicitly known; the Schäfli type is (2, 3, . . . , 3, 4).
I G is transitive imprimitive and is one of the examples appearing

in the table below.
I G is primitive. In this case, G is obtained from the permutation

representation of degree 6 of S5 ∼= PGL2(5) and the polytope is
the 4-simplex of Schäfli type [3, 3, 3].



Degree Number Structure Order Schäfli type
6 9 S3 × S3 36 [2, 3, 3]
6 11 23 : S3 48 [2, 3, 3]
6 11 23 : S3 48 [2, 3, 4]
8 45 24 : S3 : S3 576 [3, 4, 4, 3]

We hope to be able to use this result to prove the conjectured
bound for the dimension of a polytope admitting the
alternating group. It may also be of use in tackling the
mysterious conjecture for the symmetric group.


