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From parties . . .

Three weeks ago I was in Leuven, presenting prizes to the
Flemish Mathematical Olympiad prizewinners, and giving a
talk. The talk started with Ramsey theory (here is a party
showing that R(3, 3) > 5):
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. . . to diagrams

. . . and ended with the shape of a random Young diagram in
the Plancherel measure:



Happy birthday, Anatoly!

This talk was inspired by a conversation I had with Anatoly in
Penderel’s Oak, a pub in Holborn, London, about three years
ago. The two of us had come to the problem of measuring
triangle-free graphs from different directions: his solution (with
Fedor Petrov) led to some very nice connections. But it doesn’t
completely answer my questions, so there is still more to be
done!



The Higman–Sims graph

As a PhD student, I spent a long time thinking about the
Higman–Sims graph and its automorphism group, and
possible generalisations.
This graph is constructed from the Witt design, a configuration
of 22 points and 77 blocks with automorphism group M22.2.
The graph has vertex set {∗} ∪ P∪ B, where P and B are the
point and block sets; we join ∗ to every point, a point and block
whenever they are incident, and two blocks whenever they are
disjoint.
The graph contains no triangles.
If we want to get a triangle-free graph by such a construction, it
is necessary that we join blocks only if they are disjoint. The
Higman–Sims graph is remarkable in that the converse holds.



Henson’s graph

When I started thinking about the infinite in the mid-1970s,
Henson’s graph seemed like an obvious analogue of the
Higman–Sims graph:

I it is triangle-free;
I it has the property, in terms of the previous construction,

that blocks are adjacent if and only if they are disjoint;
I it is highly symmetric: indeed, it is homogeneous (this

means that any isomorphism between finite subgraphs
extends to an automorphism);

I it is universal: it contains every finite or countable
triangle-free graph as an induced subgraph.



The random graph

Another beautiful countable object is the countable random
graph, or Rado’s graph.
This graph R is universal for the class of all finite (and
countable) graphs (this is the property that interested Rado),
and is homogeneous. Rado gave an explicit construction.
Erdős and Rényi showed a spectacular property, which gives
the graph its alternative name. If we take a countable vertex
set, and choose edges independently with probability 1/2 from
the set of 2-element sets of vertices, then with probability 1 the
resulting random graph is isomorphic to R — a lovely example
of a non-constructive existence proof!
I became interested in the automorphism group of R.



Recognising homogeneous universal structures

Fraı̈ssé gave a test for the existence of a homogeneous
relational structure M which is universal for a given class C of
finite structures. Briefly: C should be the class of finite
structures embeddable in M; and if A, B ∈ C with A ⊆ B and
|B| = |A|+ 1, then any embedding of A into M can be lifted to
an embedding of B into M.
This is sometimes called the Alice’s Restaurant property, since

You can get anything you want
At Alice’s Restaurant,

according to Arlo Guthrie: you can “order” a new point with
any consistent relationships with the finitely many points you
have already.



. . . and beyond

In fact, this idea goes back to P. S. Urysohn in 1924, with his
construction (published posthumously) of a universal
homogeneous Polish space (a complete separable metric space).
It was Anatoly Vershik who told me about the Urysohn space
and explained these connections to me, after my talk at the
European Congress of Mathematics in Barcelona in 2000. (This
was my first meeting with him.)
A Polish space is too big to apply Fraı̈ssé’s method directly.
Uryshon realised that he could construct a universal
homogeneous metric space with all distances rational, and then
take its completion to obtain the required Polish space.
Indeed, if we replace “all distances rational” with “all distances
1 or 2”, we obtain precisely the random graph!



Interlude

The symmetric group Sym(N) acts on the measure space of all
graphs with vertex set N by measure-preserving
transformations.
The action is almost highly transitive: in the induced action on
the set of n-tuples of graphs, there is a single orbit with full
measure. (This is because of the random 2n-edge-colouring R2n

of the complete graph.)
In particular, if I understand correctly, the action is totally
non-free in the sense of Vershik: almost all pairs of graphs have
stabiliser R4, a proper subgroup of the individual stabilisers.
(Actually the group is uncountable, so the theory doesn’t really
apply.)
I have no idea what to do with these observations . . .



Cyclic automorphisms

Does R have cyclic automorphisms?
We can answer this in Erdös–Rényi style as follows. A graph
with a cyclic automorphism can be described by giving a set S
of positive integers: take the vertex set to be Z, and join x and y
if |x− y| ∈ S.
Conversely we can extract the set S from the graph with its
cyclic automorphism: number the vertices with integers so that
the automorphism is the shift, and then let S be the set of
positive neighbours of 0.
Now it is easy to show that two graphs with cyclic
automorphisms give rise to the same set S if and only if

I the graphs are isomorphic;
I the cyclic automorphisms are conjugate.



Cyclic automorphisms of R

Choose a random subset of N. It is very easy to show that the
resulting graph satisfies Fraı̈ssé’s condition, and so is
isomorphic to R.
Hence we have shown, entirely painlessly, that R has 2ℵ0

non-conjugate cyclic automorphisms.
The technique can be used to do more, for example

I describe the cycle structure of all automorphisms of R;
I give a condition on a countable group G for R to be a

Cayley graph for G.
The proofs give more. For example, if R is a Cayley graph for
G, then a random Cayley graph for G is isomorphic to R with
probability 1.



. . . and the Uryshon space?

Anatoly and I were able to adapt the method to show that the
“rational Urysohn space” has a transitive cyclic isometry.
Hence the usual Urysohn space has a cyclic isometry with all
orbits dense.
Its closure in the isometry group is an transitive abelian group,
giving an abelian structure to the space (indeed many different
abelian group structures).
Questions remain, for example: which abelian groups can act in
this way?



What about Henson’s graph?

Erdős, Kleitman and Rothschild showed that almost all finite
triangle-free graphs are bipartite.
So strong is this tendency that it seems to upset any attempt to
use the methods of Erdős and Rényi to study Henson’s graph.
One can try various definitions of randomness for triangle-free
graphs, for example:

I Take the probability of occurrence of a given finite graph
on a given set of vertices to be its limiting frequency in
large triangle-free graphs. By EKR, the resulting graph is
almost surely bipartite (and is the unique universal
“almost homogeneous” bipartite graph).

I Add edges one at a time randomly, but only add an edge if
it doesn’t contain a triangle. The result depends on the
order in which we consider pairs of vertices.



Baire category

Help is at hand!
As well as being a measure space, the class of all graphs on the
vertex set N is a complete metric space: two graphs are close
together if they coincide on a long initial segment of N.
Now in a complete metric space, the Baire Category theorem
gives us another notion of largeness: a set is residual if it
contains a countable intersection of open dense sets. These
topological conditions are easily translated into graph-theoretic
terms.
Now the random graph (resp., Henson’s graph) is residual in
the set of all countable graphs (resp., all countable triangle-free
graphs).
These ideas can be applied to automorphisms. All the previous
results about automorphisms of R can be proved using Baire
category instead of measure.



Cyclic automorphisms of Henson’s graph

Let me consider the case of cyclic automorphisms of Henson’s
graph in more detail.
A cyclic graph defined by a set S of positive integers is
triangle-free if and only if S is sum-free: that is, if x, y ∈ S, then
x + y /∈ S.
Moreover, the graph is isomorphic to Henson’s graph if and
only if S is sf-universal: this means that a given finite binary
word w occurs in the characteristic function of S if (and only if)
w does not contain 1s in positions whose distance belongs to S.
Now sf-universal sets are residual in the collection of sum-free
sets. So Henson’s graph has 2ℵ0 non-conjugate cyclic
automorphisms!



Random sum-free sets

To obtain this result using measure, we would need to attach a
meaning to “a random sum-free set” so that almost surely (or at
least with positive probability) the random sum-free set is
sf-universal.
I don’t know how to that, but I spent some time playing with a
very simple model.
Consider the natural numbers in order. When considering n, if
n = x + y with x, y ∈ S, then of course n /∈ S; otherwise, decide
whether n ∈ S by the toss of a fair coin.
It is not surprising to learn that the probability that S consists
entirely of even numbers is zero. However, there is a surprise
in store!



Odd numbers

Theorem
The probability that the random sum-free set S consists entirely of odd
numbers is non-zero: in fact this probability is approximately 0.218.
Intuitively the reason is clear. If after many steps we have only
obtained odd numbers, then the next even number is very
likely to be excluded as the sum of two numbers previously
chosen, but the next odd number still gets included with
probability 1/2.
In some sense this is the EKR theorem rearing its head again: if
S consists of odd numbers only, then every edge in the Cayley
graph of Z with respect to S joins an even number to an odd
number, so the graph is bipartite.
This was the first theorem I proved with the help of a computer
(a Sinclair Spectrum with 48 kilobytes of RAM and 3.5Mhz
clock speed).



More fragments of the space

A subset of Z/(n) is complete sum-free if it is sum-free and
every z /∈ S can be written as z = x + y where x, y ∈ S.
So {1} (mod 2) (the odd numbers) gives an example, but there
are many others, such as {1, 4} (mod 5) or {2, 3} (mod 5).

Theorem

I The probability that S is contained in a given complete sum-free
set is non-zero.

I More generally, if T (mod n) is a complete sum-free set and A a
finite set of natural numbers, then the probability that S is
contained in the union of T and A is non-zero.

An example of the last case is the set of sum-free sets in which 2
is the only even number, which has probability somewhere
round 10−6.



Density

In order to visualise this complicated structure, one can
consider the density of a random sum-free set. (I conjecture
that the density exists with probability 1.)
If T (mod n) is complete sum-free, then elements of T occur
with probability close to 1/2, so the density is almost surely
|T|/2n. This gives 1/4 for sets of odd numbers, 1/5 for sets
contained in {1, 4} (mod 5) or {2, 3} (mod 5), etc.
Plotting the density of large finite sum-free sets is like using a
spectroscope: the longer you wait, the more accurate the plot
should be. We expect a spectral line at 1/4 with intensity
0.218 . . ., and weaker lines at 1/5, 3/16, and so on.



Density plot

A plot of the density of about 106 subsets of [1, 105] looks like
this:



Questions

This plot raises various questions:
I First, as mentioned, does the density exist almost surely?
I Is the density positive almost surely?
I Is the spectrum discrete above 1/6?
I What happens below 1/6? Is there a continuous part to the

spectrum, or is it many discrete parts smeared together?
One thing we do know. Tomasz Schoen proved:

Theorem
A sf-universal set has density 0.
So probably this model does not give information about
Henson’s graph.



Further development

The most important development was the result of Petrov and
Vershik mentioned in the introduction. These authors
constructed an exchangeable measure on countable
triangle-free graphs, which is concentrated on the isomorphism
class of Henson’s graph.
Their approach was quite different. They constructed an
uncountable graph on the unit interval in which triangles have
measure zero, and then obtained the countable random graph
by sampling vertices from the unit interval. There seems to be
some connection with the Lovász–Szegedy theory of graphons.
The method has been extended to a very wide range of
homogeneous relational structures by Nate Ackerman,
Cameron Freer and Rihanna Patel.



Cayley graphs for other groups

As mentioned earlier, there is a near-characterisation of
countable groups which admit the randm graph as a Cayley
graph; there are necessary and sufficient conditions are bit
complicated to state, but all countable abelian groups of infinite
exponent satisfy them. Moreover, if some Cayley graph is
isomorphic to R, then almost all are.
This result can also be proved by Baire category arguments.
Also, Baire category arguments can be used for Henson’s
triangle-free graph, showing it to be a Cayley graph for a wide
variety of groups.
The methods fail for Henson’s universal homogeneous Kn-free
graph for n > 3: this graph is not a normal Cayley graph for
any group, and in particular is not a Cayley graph for any
abelian group.
Recently Greg Cherlin showed that these graphs are Cayley
graphs for some groups including non-abelian free groups.



What I would like

For the reasons explained, I would like a measure on the class
of sum-free subsets of N which is concentrated on the
sf-universal sets.
More generally, I want a measure on the set of pairs consisting
of a triangle-free graph on N and a group acting on N by
graph automorphisms, which is concentrated on the
isomorphism class of Henson’s graph. (I talked only about the
infinite cyclic group above, but that was only the first step.)
Also I would like more general results. I would like to be able
to show the known results about the random graph and
Henson’s graphs as Cayley graphs by a measure-theoretic
method.
This must somehow involve choosing at random a structure
which encodes the group G and the connection set S from
which the Cayley graph is built.
Cherlin’s results, using bare-handed constructions, will
probably be harder than the results for the triangle-free case.



Almost highly transitive?

Is the infinite symmetric group almost highly transitive on the
set of graphs if we use the Petrov–Vershik triangle-free
measure? In other words, if we pick n random graphs from this
measure, does the n-tuple form a unique configuration?
Probably the answer is yes, and the proof not too hard.
More generally, are there other almost highly transitive group
actions? And what can be said about them?



The end

Thank you for your attention.
I wish Anatoly a very happy birthday, and many more years of
producing deep mathematics and spreading his knowledge
widely, as he has done up to now.


