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History

The icosahedron has six diagonals, any two making the same
angle (arccos(1/

√
5)).

Three diagonals through the vertices of a face can be directed
so that any two make an acute angle. But for the remaining
triples of diagonals, this is not possible; they can be directed so
that any two make an obtuse angle.
The rotation group of the icosahedron (which is isomorphic to
A5) permutes the six diagonals 2-transitively and preserves the
two types of triples.



Around 1970, Graham Higman considered the Conway
sporadic simple group Co3, one of only two sporadic simple
groups (apart from the Mathieu groups) to have a 2-transitive
permutation action (in this case, with degree 276).
Higman gave a combinatorial construction of a set of triples
taken from a set of 276 points which has Co3 as its
automorphism group. This set has the property that any four
points contain an even number of distinguished triples.
Higman called such a set a two-graph.
The Higman two-graph arises from a set of 276 equiangular
lines in R23, which is realised inside the Leech lattice.



A little earlier, motivated by questions in elliptic geometry,
specifically the congruence order of the elliptic plane, Jaap
Seidel had represented a set of n equiangular lines by a graph
on n vertices, or more precisely, a switching class of graphs.
(The operation of switching with respect to a set of vertices
interchanges edges and non-edges between the set and its
complement, while leaving edges within the set or within its
complement unchanged.)
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The Seidel tree in Eindhoven



Equivalent concepts

It turns out that the following concepts are all, in some sense,
equivalent:

I two-graphs;
I switching classes of graphs;
I double covers of complete graphs;
I sets of equiangular lines in Euclidean space.

Seidel wrote a number of surveys of two-graphs in the 1970s
and 1980s. Recently there have been some new developments.
I will briefly describe the equivalences and then discuss some
new things.



Two-graphs and switching classes

In a graph, we say that an odd triple is a triple of vertices which
contains an odd number of edges. A pair of graphs is
equivalent under switching if and only if they have the same
set of odd triples.
The set of odd triples in a graph is a two-graph (that is, any
4-set contains an even number of odd triples). Every two-graph
arises in this way.
A consequence is that the automorphism groups of the
two-graph and of the corresponding switching class of graphs
are equal. (An automorphism of a switching class is a vertex
permutation which carries some, and hence every, graph in the
class to another graph in the class.) This group contains the
automorphism group of each graph in the switching class as a
subgroup.



A representation theorem

Here is a Frucht-type theorem which is a converse to the
preceding remark.

Theorem
Given any finite group G, there is a switching class C of graphs with
the properties

I Aut(C) = G;
I for each subgroup H ≤ G, there is a graph Γ ∈ C with

Aut(Γ) = H.



A binary representation

Given a set X of n points, let Vk be the vector space of functions
from the set of k-subsets of X to the binary field F2.
For any k < n, there is a coboundary map δk from Vk to Vk+1,
where δk(f ) is the function whose value on a (k + 1)-set is the
sum of the values of f on its k-subsets.
Now V0 has dimension 1, and the image of δ0 contains the two
sets ∅ and X (the all-zero and all-one vectors).
The kernel of δ1 is equal to this image, and its image is the set of
complete bipartite graphs.
The kernel of δ2 is equal to this image, and its image is the set of
two-graphs, which is the kernel of δ3.
These facts (easily shown directly) state that the F2
cohomology of the simplex vanishes in dimensions 0, 1 and 2.



Double covers of complete graphs

By a double cover of Kn I mean a graph ∆ with a 2-to-1
covering map from the vertices of ∆ to those of Kn, so that each
edge of Kn is covered by two edges of ∆.
If we choose arbitrarily one of each pair of vertices covering
each vertex of Kn, we obtain a graph Γ on n vertices. Replacing
some vertices by the other vertices in their pairs has the effect
of switching Γ with respect to this set of vertices.
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There are two double covers of K3, a pair of triangles and a
hexagon. Taking as triples the 3-sets covered by a pair of
triangles, we obtain the two-graph which corresponds to this
switching class.
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The automorphism group of the double cover is itself a double
cover of the automorphism group of the two-graph, which may
or may not split. In the case of the icosahedron, the double
cover is just the 1-skeleton, and its automorphism group is
C2 ×A5.



Equiangular lines

We use the Seidel adjacency matrix A of a graph, whose rows
and columns are indexed by the vertices, and whose entries are
0 on the diagonal, +1 for adjacency, and −1 for non-adjacency.
The matrix A is real symmetric, and so is diagonalisable: its
eigenvalues are real.
Switching the graph corresponds to pre- and post-multiplying
A by a diagonal matrix with entries −1 on the switching set
and +1 elsewhere. So graphs in the same switching class have
Seidel adjacency matrices which are similar, and so have the
same Seidel spectrum.



Since A has trace 0, its smallest eigenvalue is negative, say −λ,
with multiplicity n− d, say. (Assume that the graph is not null.)
Then A + λI is positive semi-definite, and so is the Gram matrix
of inner products of a set of vectors in Rd. Each vector has
squared length λ, and the inner products of different vectors
are ±1; so the angle between any two vectors is arccos(1/λ) or
π − arccos(1/λ). Thus the lines spanned by these vectors are
equiangular.
Switching the graph corresponds to replacing the vectors in the
switching set by their negatives.
Conversely, given a set of equiangular lines, choose a unit
vector along each line as a vertex of a graph, where two
vertices are adjacent if the vectors make an acute angle.
Different choices of vectors give switching-equivalent graphs.
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Heavily covered points

The following theorem was proved by Boros and Füredi for
d = 2, and Bárány for arbitrary d.

Theorem
For any d ≥ 2, there is a positive constant cd with the property that,
for any set of n points in general position in Rd, there is a point (not
necessarily one of the given points), which lies in a proportion at least
cd of the ( n

d+1) simplexes spanned by the (d + 1)-sets of points in the
set.
The correct value of c2 (the supremum of all real numbers for
which the statement holds) is 2/9; but for d > 2, only upper
and lower bounds are known.



Gromov’s result

Mikhail Gromov found a procedure for improving the lower
bound on the constant cd. The method was simplified by
Karasev, and an accessible exposition was given by Matoušek
and Wagner.
Gromov’s method for cd involves a collection of d− 1 functions;
the first function in the list involves two-graphs, so I will just
concentrate on this.
The density of a graph (or a two-graph) is the proportion of all
2-sets (resp. 3-sets) which are edges of the graph (resp. triples
of the two-graph. Gromov’s function φ2 is defined by the rule
that φ2(α) is the limit inferior of the densities of two-graphs
with the property that all graphs in the corresponding
switching class have density at least α.



Application

Using Razborov’s flag algebra method, Král’, Mach and Sereni
were able to find lower bounds for φ2(α) and hence for cd for
arbitrary d.
For α ∈ [0, 2/9] (the values needed for Gromov’s method), they
show that φ2(α) ≥ 3

4 α(3−
√

8α + 1).
In this way, they improved the lower bound on c3 from 0.06332
to 0.07480. (The best known upper bound is 0.09375.)



Statistics of switching classes

Computing Gromov’s φ2 is equivalent to finding the smallest
number of edges in a graph in the switching class of a
two-graph with given density. Note that the minimising graph
has the property that, given any 2-partition of the vertices, at
most half of the pairs crossing the partition are edges of the
graph.
More general question about the distribution of numbers of
edges in the switching class of a graph could be asked.
I will just make the easy remark that the average edge-density
in any switching class is 1/2, since half of the switching
partitions separate any given pair of points.



Primitive groups are small

A permutation group G acting on a set X of n points (with
n > 2) is primitive if there is no partition of X invariant under
G apart from the two trivial partitions (into singletons, and
with a single part).
Primitive groups have always been the main focus of attention
in finite permutation group theory. Since the Classification of
Finite Simple Groups (CFSG), we know much more about
primitive groups. In particular, apart from symmetric and
alternating groups, they have very small orders.
I will trace one measure of this, and a recent result in this line of
work related to two-graphs.



A theorem of Cameron, Neumann and Saxl

In the early 1980s, with Πeter Neumann and Jan Saxl, I proved:

Theorem
If G is a primitive group on X, other than Sn and An and finitely
many exceptions, then there is a subset of X whose setwise stabiliser
in G is the identity.



Extensions

This result has been quantified in various ways:

I Ákos Seress found the finitely many exceptions: there are
43 of them, the largest degree being 32.

I I showed that the proportion of subsets whose stabiliser is
trivial tends to 1 as n→ ∞ (in primitive groups of degree n
other than Sn and An).

I Laci Babai and I showed that we can take the size of the
subset to be at most n1/2+o(1).



Seress’ list

Here for the record is Seress’ list of primitive groups with no
regular orbit on the power set, excluding symmetric and
alternating groups. The first number is the degree and the
second is the number of the group in the GAP library of
primitive groups.
(5, 2, D10), (5, 3, F20), (6, 1, A5), (6, 2, S5), (7, 4, F42), (7, 5, L3(2)),
(8, 2, 23.7.3), (8, 3, L(2)), (8, 4, L3(2).2), (8, 5, 24.L3(2)),
(9, 2, 32.D8), (9, 5, 32.8.2), (9, 6, 32.2.L2(3)), (9, 7, 32.2.L3(3).2),
(9, 8, L2(8)), (9, 9, L2(8).3), (10, 2, S5), (10, 3, A6), (10, 4, S6),
(10, 5, A6.2), (10, 6, A6.2), (10, 7, A6.22), (11, 5, L2(11)),
(11, 6, M11), (12, 2, L2(11).2), (12, 3, M11), (12, 4, M12),
(13, 7, L3(3)), (14, 2, L2(13).2), (15, 4, A8), (16, 16, 24.(A5 × 3).2),
(16, 17, 24.A6), (16, 18, 24.S6), (16, 19, 24.A7), (16, 20, 24.L4(2)),
(17, 7, L2(16).2), (17, 8, L2(16).4), (21, 7, L3(4).3.2), (22, 1, M22),
(22, 2, M22.2), (23, 5, M23), (24, 3, M24), (32, 5, 25.L5(2)).



Automorphism groups of hypergraphs

Frucht showed that every group is the automorphism group of
a graph. But not every permutation group is the automorphism
group of a graph acting on the vertices (for example,
2-transitive groups cannot be). Using the results described
earlier, Babai and I showed:

Theorem
Apart from the alternating groups and finitely many others, every
primitive group is the full automorphism group (acting on vertices) of
an edge-transitive hypergraph.
The problem of finding the finite list of exceptions is open.
Babai and I showed that asymptotically we can take the
cardinality of edges in the hypergraph to be n1/2+o(1).



A theorem about switching classes

I will present a new result along these lines.
It might be thought that very symmetric switching classes (say
those with primitive automorphism groups) will be made up of
very symmetric graphs. But in fact, we have:

Theorem
Apart from the switching classes of the complete and null graphs, and
finitely many others, every switching class with primitive
automorphism group contains a graph with trivial automorphism
group.
Work to determine the finitely many exceptions is in progress.



Dimension

The final result is related to the concept of metric dimension. I
will use a version of this more adapted to the situation.
Given a graph Γ, a graph basis of Γ is a set S of vertices with the
property that distinct vertices outside S have distinct
neighbour sets in S. The graph dimension of Γ is the smallest
size of a graph basis.
Note that a graph basis is a base for the automorphism group
of Γ (its pointwise stabiliser is trivial), so the graph dimension
is an upper bound for the base size.
Similarly, given a 3-uniform hypergraph Γ, a hypergraph basis
for Γ is a set S of vertices such that, for distinct vertices v /∈ S,
the graphs Γv(S) with edges the pairs {x, y} ⊆ S for which
{v, x, y} is an edge of Γ, are distinct.



Descendants

If T is a two-graph with a vertex v, there is a unique graph Γv in
the corresponding switching class which has v as an isolated
vertex. (Take any graph in the switching class, and switch with
respect to the neighbours of v.) The graphs Γv − v are called
descendants of T.
The descendants of a two-graph are the graphs induced on
vertex neighbourhoods in the corresponding double cover of
the complete graph.
In particular, if two descendants are isomorphic, then the
corresponding vertices are in the same orbit of the
automorphism group of the two-graph; so if all descendants
are isomorphic, then the automorphism group is transitive
(and conversely).



Regularity

Recall that a two-graph is regular if any two vertices lie in the
same number of triples. Now the following are equivalent:

I the two-graph T is regular;
I the corresponding double cover is a Taylor graph (an

antipodal distance-regular graph with diameter 3 and
antipodal classes of size 2);

I some (or equivalently every) descendant of T is strongly
regular, with k = 2µ;

I the Seidel spectrum has just two eigenvalues.
For example, the descendants of the two-graph associated with
the diagonals of the icosahedron are pentagons (as can be seen
by looking along a diagonal). The descendants of the Higman
two-graph for Co3 are isomorphic to the McLaughlin strongly
regular graph.



A theorem on dimensions

Robert Bailey showed that the metric dimension of the
descendants of any Taylor graph differ by at most 1. This
suggested a general result which requires no regularity.

Theorem

I The graph dimension of any graph in the switching class
associated with a two-graph T does not exceed the hypergraph
dimension of T.

I Let v be a vertex of a two-graph T. Then the hypergraph
dimension of T is at most one more than the graph dimension of
the descendant Γv − v.


