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A surprising formula

Theorem
The length of the longest chain of subgroups in the symmetric group

S, is
B’ﬂ ~b(n) —1,

where b(n) is the number of ones in the base 2 representation of n.
I proved this in the early 1980s; Ron Solomon and Alex Turull
proved it independently; we joined forces to write it up.
The b(n) suggests how to find a longest chain:

> Ifn=2"+4 ... 4 2% where the g; are distinct (and

r = b(n)), then descend to Sy X - - - X Sper in ¥ — 1 steps.

> Sou > Sza—l 1Sy > Sza—l X Sza—l fora > 1.

» Then do the bookkeeping.
The Classification of Finite Simple Groups is needed to show
that there is no longer chain; its use could probably be avoided.
For some 7 (for example 7 and 15) there are other chains of the
same length.



Subgroup length

Define I(G) to be the length of the longest chain of subgroups
inG.

Another interpretation: /(G) is the maximum, over all
permutation actions of G, of the size of a largest irredundant
base (a sequence of points whose pointwise stabiliser is the
identity, with no point fixed by the stabiliser of its
predecessors).

A trivial observation: by Lagrange’s Theorem, I(G) does not
exceed the number of prime divisors of |G| (counted with
multiplicity).

The question of finding /(S ) was first raised by Laszl6 Babai in
the context of computational group theory.



It is easy to see that, if N <G, then [(G) = I(N) +(G/N). (Itis
trivial that /(G) > I(N) +1(G/N), by taking a chain passing
through N. For the reverse inequality, observe that any step

H < K entails either HNN < KNN or HN/N < KN/N, and so
requires a step in either N or G/N.) Hence we can find I(G) if
we know the lengths of composition factors of G.

Solomon and Turull, with various co-authors, have worked out
exact values or good bounds for all the finite simple groups.
So, in what follows, we shall typically regard the length of a
group as “known”.



Semigroups

The length of a group G is at most the logarithm of |G|, by
Lagrange’s Theorem. No such bound holds for semigroups.
The extreme case is the zero semigroup Z, containing an
element 0 and having the property that any product is equal to
0. Then every subset containing 0 is a subsemigroup, and the
length of the longest chain of non-empty semigroups is |S| — 1.
Can we calculate the maximum length of a chain in such
naturally-occurring semigroups as, for example,

» T, the full transformation semigroup on n points,
consisting of all maps from the domain {1,...,n} to itself
(with order |T,| = n"), or

» I, the symmetric inverse semigroup on n points,
consisting of all bijections between pairs of subsets of the
domain {1,...,n} of the same cardinality (with order

n 2
=) (?) it)?

i=0



It turns out that for both T, and I, the length is a constant
multiple of the order. (The proof techniques are quite different.
For I,, we have an exact formula for the length, in terms of I(S)
for k < n, and the result is asymptotically %|I,|. For T, we only
have the weaker result that /(T),) > ¢|Ty| for an explicit ¢ > 0,
and cannot prove yet that I(T,)/|T,| tends to a limit.)

First, a point of terminology. Unlike for groups, the empty set is
a subsemigroup of any semigroup. For convenience, we
redefine length so that /(S) is the largest number of non-empty
semigroups in a chain minus 1. This definition does what you
expect for groups and monoids, and makes some formulae
simpler to state and use.



A general result . ..

It is clear that, if T is a subsemigroup of S, then I(T) < I(S).
Quotients are more difficult. The “kernel” of a group
homomorphism is a special kind of subgroup, but the kernel of
a semigroup homomorphism is a congruence (a partition of S).
It is true that, if p is a congruence on S, then [(S/p) < I(S).

The best analogue of the result /(G) = I[(N) +I(G/N) that we
have for semigroups is the following. An ideal of a semigroup
S is a subset I closed under left and right multiplication by
elements of S. It is a subsemigroup. There is also a Rees quotient
S/1, defined as follows: the elements are those of S \ I together
with a new element 0; the product xy is equal to its value in S
unless this lies in I, in which case the product in S/1 is zero.

Theorem
If I'is an ideal of a semigroup S, then 1(S) = I(I) + 1(S/1I).



. and a corollary

A semigroup S is regular if for every x € S there existsy € S
such that xyx = x.

We also need Green’s relations. If S is a semigroup, let S! be the
monoid obtained by adjoining an identity if there is not one
already. Then two elements x and y are L-equivalent (resp.
R-equivalent, J-equivalent) if S'x = Sly (resp., xS' = yS!,
SlxS! = SlySh). The L-, R- and J-classes are the equivalence
classes of these relations.

The principal factor of a J-class | has elements J U {0}, with xy
equal to its value in S if this lies in ], 0 otherwise.

Theorem
Let S be a finite reqular semigroup with J-classes |1, . ... Then

1(S) =1U7) + - +10m) — 1.



Inverse semigroups

An inverse semigroup is a semigroup S such that, for any x € S,
there exists a (unique) y € S such that xyx = x and yxy = v.
Inverse semigroups are regular, so the preceding result applies:

Theorem

Let S be an inverse semigroup with [J-classes |1, ..., Jm. If n; denotes
the numebr of L- and R-classes contained in |;, and G; is any
maximal subgroup of S contained in J;, then

I(S) = -1 +g (ni(l(Gi) +2) + <’;> G| - 1) .



The symmetric inverse semigroup

For the semigroup I, of partial bijections between subsets of
{1,...,n}, we define the rank of an element to be the
cardinality of the subsets between which it maps.

Two elements are [J-equivalent if and only if they have the
same rank. So if J; is the class of maps of rank i, then £ and R
are determined by the domain and range of the maps in J;, so

,;; - () and G; = S,
o= E((rsr () () )5

This formula is due to Ganyushkin and Mazorchuk by a
different argument. Note that /(S;) is given by the formula of
Cameron, Solomon and Turull.



Some values

1 2 3 4 5 6 7 8
IL,| |2 7 34 209 1546 13327 130922 1441729
1 6 25 116 722 5956 59243 667500

We used the formula to show that

Theorem
lim I(I,,)/|I,] = 1/2.

The same limit holds for various other interesting semigroups:
the dual inverse symmetric semigroup, the semigroup of
partial order-preserving injective mappings, and the semigroup
of partial orientation-preserving injective mappings.



The full transformation monoid

For T}, our results are much less precise. Recall that |T,,| = n".

Theorem

I(T,)/|Ta| > e 2 —n"13(2e 2(1—e 1) +0(1)).

Again it is true that T}, is regular, so [(T,) is the sum of the
lengths of the principal factors of its [J-classes, minus 1. Again
it is true that the elements of given rank k form a [J-class,
which we denote by Ji.

An element f € T, with rank k has a kernel, a k-partition of
{1,...,n},and an image, a k-subset of {1, ...,n}. Now the
product fif, has rank k if and only if the image of f; is a
transversal for the kernel of f,, and has smaller rank (and so is 0
in the principal factor) otherwise.



Leagues

Aleague of rankkon {1,...,n} is a pair (P, S), where P is a set
of k-partitions of the domain and S a set of k-subsets, with the
property

no member of S is a transversal for any member of P.

The content of a league (P, S) is |P| - |S].
Given a league (P, S) with content ¢, we have a zero semigroup
of order ck! in J;/. Hence

Proposition
Let F(n, k) be the largest league of rank k on {1, ...,n}. Then

I(T,) > Y F(n )k — 1.
k=1



Leagues with large content

There are several constructions for leagues with large content;
which is best depends on the relative sizes of n and k.

» Choose one element of {1,...,n}, say 1. Let P be the set of

all k-partitions having 1 as a singleton part, and S the set of
all k-subsets not containing 1. Then (P, S) is a league, with

k
numbers of the second kind (S(n, k) is the number of
k-partitions of {1,...,n}).

content (" 1> S(n—1,k — 1), where S denotes Stirling

» Choose two elements of {1,...,n},say 1 and 2. Let S
consist of all k-sets containing 1 and 2, and P the
k-partitions which don’t separate these two points. Then

(S,P) is a league, with content (Z : ;) S(n—1,k).

The first strategy is better for large k, the second for small k.



Open problems

Problem
Calculate F(n, k), the largest content of a league of rank k on n points.

We have exact results for k < 2 and k > n — 1, and the

following:

nilk=2 3 4 51 6

3 1

4 3 3

5 9| 28 6

6 21150 | 125 | 12

7 45| 760 | 1350 | 390 | 20
Problem

Does I[(Ty,)/ |Ty| tend to a limit as n — co? Is the limit e =2?

Clearly our bounds could be tightened a little.



Other semigroups

Similar techniques apply to the semigroup O, of

order-preserving transformations of {1, ...,n}, where we have

a lower bound which is asymptotically |O,|/4. (Note that
2n—1

|On| = n )

We also have results for the general linear semigroup (all linear
maps on GF(q)"), Brandt semigroups, Rees matrix semigroups,
free bands ...



Numbers of subsemigroups

The number of subgroups of the symmetric group S, is at least
n2/16

roughly 2 .

A remarkable result of Pyber found an upper bound also of the

form 2¢"* for the number of subgroups.

For a semigroup S, as we have seen, the number can be within

a constant factor of 2/°I. How many subsemigroups does, for

example, T, have?

Theorem
For an explicit constant c, the number of subsemigroups of T, is at
least Z(C*"(l))”ﬂ/z, where

e—2
c = .

3y/3(e"1 —2e72)

Note that this is a bit smaller than 2¢/Ts| (because of the —1/2 in
the exponent).



Generators

Theorem

The smallest number d(n) such that any subsemigroup of T,, can be
generated by d(n) elements is at least (c — o(1))n"~1/2, where c is as
in the preceding theorem.

The corresponding parameter for S, is much smaller. Annabel
Mclver and Peter Neumann showed:

Theorem
For n > 4, any subgroup of S, can be generated by at most |n /2]
elements.

Mark Jerrum gave the weaker bound n — 1, but with an
algorithmic proof. Given a sequence of elements of S,, we can
read each element and do a polynomial-time computation
producing at most n — 1 elements generating the same group.



Whiston's theorem

A similar-looking theorem was proved by Julius Whiston. A set
of elements of a group is independent if no element lies in the
subgroup generated by the others.

Theorem
An independent set in Sy, has size at most n — 1, with equality if and
only if it generates the group.

This group parameter arose in the analysis of the product
replacement algorithm by Diaconis and Saloff-Coste. Philippe
Cara and I found all independent sets meeting Whiston’s
bound.



Other group parameters

We saw much earlier that the length of a group G is the
maximum of the size of a largest irredundant base, over all
permutation actions of G. This suggests two related
parameters:

» the maximum, over all actions, of the maximum size of a
minimal base;

» the maximum, over all actions, of the minimum base size.

Little is known about the second parameter, but the first has
another interpretation ...



Boolean sublattices

Theorem
Let G be a finite group.

» The largest size of an independent subset of G is equal to the
maximum m for which the Boolean lattice B(m) is embeddable as
a join-semilattice of the subgroup lattice of G.

> This is equal to the maximum m for which the Boolean lattice
B(m) is embeddable as a meet-semilattice of the subgroup lattice
of G.

» The maximum, over all actions of G, of the maximum size of a
minimal base, is equal to the maximum m for which the Boolean
lattice B(m) is embeddable as a meet-semilattice of the subgroup
lattice of G in such a way that the bottom element is a normal
subgroup.



Two problems

Problem
Are the two parameters in the above theorem equal for any group G?

Problem
Is there an analogue for transformation semigroups?



