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A surprising formula

Theorem
The length of the longest chain of subgroups in the symmetric group
Sn is ⌈

3n
2

⌉
− b(n)− 1,

where b(n) is the number of ones in the base 2 representation of n.
I proved this in the early 1980s; Ron Solomon and Alex Turull
proved it independently; we joined forces to write it up.
The b(n) suggests how to find a longest chain:

I If n = 2a1 + · · ·+ 2ar , where the ai are distinct (and
r = b(n)), then descend to S2a1 × · · · × S2ar in r− 1 steps.

I S2a > S2a−1 o S2 > S2a−1 × S2a−1 for a > 1.
I Then do the bookkeeping.

The Classification of Finite Simple Groups is needed to show
that there is no longer chain; its use could probably be avoided.
For some n (for example 7 and 15) there are other chains of the
same length.



Subgroup length

Define l(G) to be the length of the longest chain of subgroups
in G.
Another interpretation: l(G) is the maximum, over all
permutation actions of G, of the size of a largest irredundant
base (a sequence of points whose pointwise stabiliser is the
identity, with no point fixed by the stabiliser of its
predecessors).
A trivial observation: by Lagrange’s Theorem, l(G) does not
exceed the number of prime divisors of |G| (counted with
multiplicity).
The question of finding l(Sn) was first raised by László Babai in
the context of computational group theory.



It is easy to see that, if N E G, then l(G) = l(N) + l(G/N). (It is
trivial that l(G) ≥ l(N) + l(G/N), by taking a chain passing
through N. For the reverse inequality, observe that any step
H < K entails either H ∩N < K ∩N or HN/N < KN/N, and so
requires a step in either N or G/N.) Hence we can find l(G) if
we know the lengths of composition factors of G.
Solomon and Turull, with various co-authors, have worked out
exact values or good bounds for all the finite simple groups.
So, in what follows, we shall typically regard the length of a
group as “known”.



Semigroups

The length of a group G is at most the logarithm of |G|, by
Lagrange’s Theorem. No such bound holds for semigroups.
The extreme case is the zero semigroup Z, containing an
element 0 and having the property that any product is equal to
0. Then every subset containing 0 is a subsemigroup, and the
length of the longest chain of non-empty semigroups is |S| − 1.
Can we calculate the maximum length of a chain in such
naturally-occurring semigroups as, for example,

I Tn, the full transformation semigroup on n points,
consisting of all maps from the domain {1, . . . , n} to itself
(with order |Tn| = nn), or

I In, the symmetric inverse semigroup on n points,
consisting of all bijections between pairs of subsets of the
domain {1, . . . , n} of the same cardinality (with order

|In| =
n

∑
i=0

(
n
i

)2

i!)?



It turns out that for both Tn and In, the length is a constant
multiple of the order. (The proof techniques are quite different.
For In we have an exact formula for the length, in terms of l(Sk)
for k ≤ n, and the result is asymptotically 1

2 |In|. For Tn we only
have the weaker result that l(Tn) ≥ c|Tn| for an explicit c > 0,
and cannot prove yet that l(Tn)/|Tn| tends to a limit.)
First, a point of terminology. Unlike for groups, the empty set is
a subsemigroup of any semigroup. For convenience, we
redefine length so that l(S) is the largest number of non-empty
semigroups in a chain minus 1. This definition does what you
expect for groups and monoids, and makes some formulae
simpler to state and use.



A general result . . .

It is clear that, if T is a subsemigroup of S, then l(T) ≤ l(S).
Quotients are more difficult. The “kernel” of a group
homomorphism is a special kind of subgroup, but the kernel of
a semigroup homomorphism is a congruence (a partition of S).
It is true that, if ρ is a congruence on S, then l(S/ρ) ≤ l(S).
The best analogue of the result l(G) = l(N) + l(G/N) that we
have for semigroups is the following. An ideal of a semigroup
S is a subset I closed under left and right multiplication by
elements of S. It is a subsemigroup. There is also a Rees quotient
S/I, defined as follows: the elements are those of S \ I together
with a new element 0; the product xy is equal to its value in S
unless this lies in I, in which case the product in S/I is zero.

Theorem
If I is an ideal of a semigroup S, then l(S) = l(I) + l(S/I).



. . . and a corollary

A semigroup S is regular if for every x ∈ S there exists y ∈ S
such that xyx = x.
We also need Green’s relations. If S is a semigroup, let S1 be the
monoid obtained by adjoining an identity if there is not one
already. Then two elements x and y are L-equivalent (resp.
R-equivalent, J -equivalent) if S1x = S1y (resp., xS1 = yS1,
S1xS1 = S1yS1). The L-,R- and J -classes are the equivalence
classes of these relations.
The principal factor of a J -class J has elements J ∪ {0}, with xy
equal to its value in S if this lies in J, 0 otherwise.

Theorem
Let S be a finite regular semigroup with J -classes J1, . . . Jm. Then

l(S) = l(J∗1) + · · ·+ l(J∗m)− 1.



Inverse semigroups

An inverse semigroup is a semigroup S such that, for any x ∈ S,
there exists a (unique) y ∈ S such that xyx = x and yxy = y.
Inverse semigroups are regular, so the preceding result applies:

Theorem
Let S be an inverse semigroup with J -classes J1, . . . , Jm. If ni denotes
the numebr of L- andR-classes contained in Ji, and Gi is any
maximal subgroup of S contained in Ji, then

l(S) = −1 +
m

∑
i=1

(
ni(l(Gi) + 2) +

(
ni

2

)
|Gi| − 1

)
.



The symmetric inverse semigroup

For the semigroup In of partial bijections between subsets of
{1, . . . , n}, we define the rank of an element to be the
cardinality of the subsets between which it maps.
Two elements are J -equivalent if and only if they have the
same rank. So if Ji is the class of maps of rank i, then L andR
are determined by the domain and range of the maps in Ji, so

ni =
(

n
i

)
, and Gi = Si.

Thus

l(In) = −1 +
n

∑
i=0

((
n
i

)
(l(Si) + 2) +

(
n
i

)((
n
i

)
− 1
)

i!
2
− 1
)

.

This formula is due to Ganyushkin and Mazorchuk by a
different argument. Note that l(Si) is given by the formula of
Cameron, Solomon and Turull.



Some values

n 1 2 3 4 5 6 7 8
|In| 2 7 34 209 1546 13327 130922 1441729

l(In) 1 6 25 116 722 5956 59243 667500

We used the formula to show that

Theorem
lim
n→∞

l(In)/|In| = 1/2.

The same limit holds for various other interesting semigroups:
the dual inverse symmetric semigroup, the semigroup of
partial order-preserving injective mappings, and the semigroup
of partial orientation-preserving injective mappings.



The full transformation monoid

For Tn, our results are much less precise. Recall that |Tn| = nn.

Theorem
l(Tn)/|Tn| ≥ e−2 − n−1/3(2e−2(1− e−1) + o(1)).
Again it is true that Tn is regular, so l(Tn) is the sum of the
lengths of the principal factors of its J -classes, minus 1. Again
it is true that the elements of given rank k form a J -class,
which we denote by Jk.
An element f ∈ Tn with rank k has a kernel, a k-partition of
{1, . . . , n}, and an image, a k-subset of {1, . . . , n}. Now the
product f1f2 has rank k if and only if the image of f1 is a
transversal for the kernel of f2, and has smaller rank (and so is 0
in the principal factor) otherwise.



Leagues

A league of rank k on {1, . . . , n} is a pair (P, S), where P is a set
of k-partitions of the domain and S a set of k-subsets, with the
property

no member of S is a transversal for any member of P.

The content of a league (P, S) is |P| · |S|.
Given a league (P, S) with content c, we have a zero semigroup
of order ck! in J∗k . Hence

Proposition

Let F(n, k) be the largest league of rank k on {1, . . . , n}. Then

l(Tn) ≥
n

∑
k=1

F(n, k)k!− 1.



Leagues with large content

There are several constructions for leagues with large content;
which is best depends on the relative sizes of n and k.

I Choose one element of {1, . . . , n}, say 1. Let P be the set of
all k-partitions having 1 as a singleton part, and S the set of
all k-subsets not containing 1. Then (P, S) is a league, with

content
(

n− 1
k

)
S(n− 1, k− 1), where S denotes Stirling

numbers of the second kind (S(n, k) is the number of
k-partitions of {1, . . . , n}).

I Choose two elements of {1, . . . , n}, say 1 and 2. Let S
consist of all k-sets containing 1 and 2, and P the
k-partitions which don’t separate these two points. Then

(S, P) is a league, with content
(

n− 2
k− 2

)
S(n− 1, k).

The first strategy is better for large k, the second for small k.



Open problems

Problem
Calculate F(n, k), the largest content of a league of rank k on n points.
We have exact results for k ≤ 2 and k ≥ n− 1, and the
following:

n k = 2 3 4 5 6
3 1
4 3 3
5 9 28 6
6 21 150 125 12
7 45 760 1350 390 20

Problem
Does l(Tn)/|Tn| tend to a limit as n→ ∞? Is the limit e−2?
Clearly our bounds could be tightened a little.



Other semigroups

Similar techniques apply to the semigroup On of
order-preserving transformations of {1, . . . , n}, where we have
a lower bound which is asymptotically |On|/4. (Note that

|On| =
(

2n− 1
n

)
.)

We also have results for the general linear semigroup (all linear
maps on GF(q)n), Brandt semigroups, Rees matrix semigroups,
free bands . . .



Numbers of subsemigroups

The number of subgroups of the symmetric group Sn is at least
roughly 2n2/16.
A remarkable result of Pyber found an upper bound also of the
form 2cn2

for the number of subgroups.
For a semigroup S, as we have seen, the number can be within
a constant factor of 2|S|. How many subsemigroups does, for
example, Tn have?

Theorem
For an explicit constant c, the number of subsemigroups of Tn is at
least 2(c−o(1))nn−1/2

, where

c =
e−2

3
√

3(e−1 − 2e−2)
.

Note that this is a bit smaller than 2c|Tn| (because of the −1/2 in
the exponent).



Generators

Theorem
The smallest number d(n) such that any subsemigroup of Tn can be
generated by d(n) elements is at least (c− o(1))nn−1/2, where c is as
in the preceding theorem.
The corresponding parameter for Sn is much smaller. Annabel
McIver and Peter Neumann showed:

Theorem
For n ≥ 4, any subgroup of Sn can be generated by at most bn/2c
elements.
Mark Jerrum gave the weaker bound n− 1, but with an
algorithmic proof. Given a sequence of elements of Sn, we can
read each element and do a polynomial-time computation
producing at most n− 1 elements generating the same group.



Whiston’s theorem

A similar-looking theorem was proved by Julius Whiston. A set
of elements of a group is independent if no element lies in the
subgroup generated by the others.

Theorem
An independent set in Sn has size at most n− 1, with equality if and
only if it generates the group.
This group parameter arose in the analysis of the product
replacement algorithm by Diaconis and Saloff-Coste. Philippe
Cara and I found all independent sets meeting Whiston’s
bound.



Other group parameters

We saw much earlier that the length of a group G is the
maximum of the size of a largest irredundant base, over all
permutation actions of G. This suggests two related
parameters:

I the maximum, over all actions, of the maximum size of a
minimal base;

I the maximum, over all actions, of the minimum base size.
Little is known about the second parameter, but the first has
another interpretation . . .



Boolean sublattices

Theorem
Let G be a finite group.

I The largest size of an independent subset of G is equal to the
maximum m for which the Boolean lattice B(m) is embeddable as
a join-semilattice of the subgroup lattice of G.

I This is equal to the maximum m for which the Boolean lattice
B(m) is embeddable as a meet-semilattice of the subgroup lattice
of G.

I The maximum, over all actions of G, of the maximum size of a
minimal base, is equal to the maximum m for which the Boolean
lattice B(m) is embeddable as a meet-semilattice of the subgroup
lattice of G in such a way that the bottom element is a normal
subgroup.



Two problems

Problem
Are the two parameters in the above theorem equal for any group G?

Problem
Is there an analogue for transformation semigroups?


