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The 1970s

I was born (in Paul Erdős’ use of the word) in 1971, as a finite
group theorist, specifically a permutation group theorist.
By the mid-1970s, there was a feeling that the classification of
finite simple groups might actually be completed, and maybe
we would need to find something else to do.
John McDermott came to Oxford to give a seminar, and asked:

Question
Which infinite permutation groups G on Ω have the property that
they are highly homogeneous (transitive on the set of k-element
subsets of Ω) for all k but not highly transitive (that is, they fail to be
transitive on the set of ordered k-tuples of distinct points for some k)?



Three groups

I was able to answer the question:

Theorem
If G is highly homogeneous on the infinite set Ω, then one of the
following holds:

I there is a linear order on Ω preserved or reversed by G;
I there is a circular order on Ω preserved or reversed by G;
I G is highly transitive.

If Ω is countable, then a linear order with highly homogeneous
automorphism group must be dense and without endpoints,
and hence isomorphic to (Q,<), by Cantor’s theorem.
Similarly a countable circular order admitting such a group
must be isomorphic to the complex roots of unity.



So good things come in threes:
I A, the group of order-preserving maps on Q;
I C, preserving the circular order on the roots of unity;
I S, the symmetric group.

This theorem is now regarded as the founding document in the
study of reducts of countable homogeneous structures (in
model theory), but I still feel there is more to it than that . . .



Richard Thompson’s groups

Earlier, Richard Thompson had constructed a remarkable triple
of groups, which now go by the names F, T and V. (I have no
idea why.) They have many descriptions; here is one.

I F is the group of piecewise-linear order-preserving
permutations of the closed interval [0, 1] which are
differentiable at all but finitely many dyadic rationals and
has derivative a power of 2 on each interval.

I T is the group of piecewise-linear order-preserving
permutations of the circle S1 (regarded as the interval [0, 1]
with endpoints identified) satisfying the same conditions
as before.

I V is the group of right-continuous bijections of S1 (as
above) satisfying the same conditions as before.

Thus V is order-preserving on each interval, but there can be
breaks in its graph.



An example

Here is an element of V, taken from the exposition by Cannon,
Floyd and Parry.
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Cantor space

Such maps are homeomorphisms of the space remaining when
we remove the dyadic rationals from the unit interval.
Points of this space have infinite dyadic expansions, and so can
be identified with paths in the infinite binary tree. This is a
realisation of the Cantor space.
Elements of V can be thought of as follows: take a finite subtree
of the infinite binary tree; move the ”branches” below the
leaves of this finite subtree around arbitrarily, without any
movement within these sets, to the corresponding branches in
another finite subtree with the same number of leaves.
Here is the example seen earlier, realised in this form.



Example revisited
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Properties

Thompson’s groups have some remarkable properties. One
good source of information is the set of notes by Cannon, Floyd
and Parry.
For example,

I F and T are FP∞ groups, H∗(F, ZF) = H∗(T, ZT) = 0;
I T and V are finitely presented infinite simple groups;
I F is not elementary amenable, but it is not known whether

or not it is amenable.
I won’t define all these things – they are here to show that these
groups are important!



Historical note

I first learned about Thompson’s groups in lectures by Graham
Higman. I do not know who invented what.
Assuming the Axiom of Choice, an infinite set X is bijective
with its Cartesian square X×X. The bijection can be defined
by two unary functions α and β on X, and its inverse by a
binary function λ, satisfying the conditions (in postfix notation)

I xyλα = x, xyλβ = y;
I zαzβλ = z.

The set of algebras with signature (0, 2, 1) satisfying these laws
is a variety, so has free algebras.
V is the automorphism group of the 1-generator free algebra in
this variety.
Higman showed that, doing the same for a bijection between X
and Xn, the automorphism group of the r-generator free algebra
is a finitely presented infinite group Gn,r, which is simple if n is
even and has a simple subgroup of index 2 if n is odd.



It is possible to match up both this definition and the earlier
one with yet a third definition (much more practical and
useful) involving transformations of a forest of r n-ary trees
(one binary tree in the case of the group V).
Since the paths of such a tree are the points of Cantor space,
this gives us an action of the group (by homeomorphisms) on
the Cantor space (which can also be seen directly from the first
definition, removing the dyadic rationals (the possible points of
discontinuity) from the interval.
I think it is likely that, if Higman had mentioned the
relationship with order-preserving permutations of lines and
circles, I would have become more interested in these groups
than I actually did at the time!



Enter symbolic dynamics

Dynamicists have been interested in the shift map on sequences
over a finite alphabet for a long time. The seminal paper on
symbolic dynamics by Morse and Hedlund was published in
the American Journal of Mathematics in 1938.
For example, the map x 7→ 2x (mod 1) induces the shift map
on the space of binary sequences (identified with the base-2
“decimal expansion” of the argument x): the leading digit
drops off, and the others move up one.
This is also connected with Thompson’s groups!



Shifts and automorphisms

This is based on the work of Bleak, Maissel and Navas.
These authors show, among other things, that the outer
automorphism group Aut(Gn,r) of the Higman–Thompson
group Gn,r is independent of r, and is a specific subgroup of the
automorphism group of the one-sided shift over an alphabet of
n symbols.
These authors also give a description of the elements of this
group by means of transducers (see below).
I now turn to recent joint work with Collin Bleak in St
Andrews, in which we also show that Out(Gn,r) is the full
automorphism group of the one-sided shift.



Automata

An automaton is a black box which can be in any one of a finite
set of internal states. It can read a symbol from a fixed finite
alphabet A, upon which it undergoes a state transition. This
can happen repeatedly.
We can represent an automaton by a directed graph. The
vertices of the graph are the states, and the edges are labelled
with the elements of the alphabet. If the automaton is in state s
and reads a symbol a, it moves to the state t for which an arc
labelled a goes from s to t.
Our automata are deterministic: that is, there is exactly one
edge with each possible label leaving each vertex.
That is it: there are no accept states, and no language is
recognised by the automaton (unlike in most applications of
automata theory in computer science).



An example
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You can check that (Blue, Red, Blue) takes you to room 1 no
matter where you start.
We say that this automaton is synchronizing, and the above
sequence is a reset word for it.



Transducers

A transducer is an automaton which writes symbols as well as
reading them.
Each edge of a transducer carries two symbols a/b; if it is in
state s and reads symbol a, then it traverses this edge and
writes symbol b to its output tape.
More generally, a transducer could write a finite string of
symbols (possibly the empty string) at each step.
Thus, a transducer, in a given state and reading the first symbol
of an infinite sequence, will write out a (potentially) infinite
sequence, so inducing a map on the Cantor space of infinite
sequences. The automorphisms of the shift referred to earlier
are maps induced by transducers in this way.



An example
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Note: x 6= 2

Applied to the infinite string 222122202221 . . ., starting in state
a, this transducer writes 222022212220 . . ..



Finitely determined automata

We say that an automaton is k-determined if every word of
length k is a reset word for it. In other words, when it reads k
symbols, the state it is in depends only on the symbols read,
and not on the state it was in before reading them.
The automata involved in automorphisms of the
Higman–Thompson groups turn out to be finitely determined.
So we need to examine these further.



De Bruijn graphs
The de Bruijn graph DBn,k with word length k over an alphabet
A of size n is defined as follows.

I The vertex set consists of all the words of length k.
I There is an edge from x1x2 . . . xk to x2x3 . . . xk+1, whose

label is the (k + 1)-tuple x1x2 . . . xkxk+1.
Since we want single symbols as labels, we will use just xk+1 for
this edge.
Here is the de Bruijn graph DB2,3.
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These graphs were originally used to constuct universal
sequences. A de Bruijn sequence over A is a cyclic sequence of
length nk+1 over A, with the property that each word of length
k + 1 occurs precisely once as a (consecutive) subsequence.
The existence of de Bruijn sequences is immediate from the fact
that the de Bruijn graph is strongly connected and has
in-degree and out-degree equal, so is Eulerian; a Eulerian cycle
gives the required sequence.
(An Eulerian cycle is a cycle passing once through each
directed edge, in the correct direction; a directed graph has an
Eulerian cycle if and only if it is strongly connected and has the
in-degree of each vertex equal to its out-degree – an obvious
necessary condition).
For us the crucial property (from which the strong
connectedness follows) is that, regarded as an automaton over
the alphabet A, the de Bruijn graph DBn,k is k-determined.



Foldings of de Bruijn graphs

A folding of DBn,k is an equivalence relation ≡ on the vertex set
with the property that, if v ≡ w, then for any symbol a, the
vertices obtained by moving along edges labelled a from v and
w are also equivalent.

I The quotient of DBn,k by a folding is a k-determined
automaton.

I Every k-determined automaton (in which every state is
reachable) arises in this way.

So in order to study k-determined automata over A, we simply
have to study foldings of DBn,k.



Counting foldings

“I count a lot of things that there’s no need to count,”
Cameron said. “Just because thats the way I am. But I
count all the things that need to be counted.”

Richard Brautigan, The Hawkline Monster: A Gothic
Western

If we really understand foldings, we should be able to count
them. Let F(n, k) be the number of foldings of DBn,k.
Trivially, F(n, 1) is the Bell number B(n) (the number of
partitions of the alphabet).

n \ k 1 2 3 4
2 2 5 30 1247
3 5 192 ? ?
4 15 78721 ? ?
5 52 519338423 ? ?



Word length 2

All but one of the results in the table were found by brute-force
computation. However, we have found a formula for F(n, 2):

Theorem
Let

R(s, t) = ∑
π

(−1)|π|−1(|π| − 1)!
|π|

∏
i=1

B(ais),

where π runs over all partitions of {1, . . . , t}, |π| is the number of
parts of π, and ai is the size of the ith part. Then

F(n, 2) = ∑
π

s

∏
i=1

R(m, ai),

where π runs over all partitions of the n-letter alphabet, m is the
number of parts of π, and ai is the cardinality of the ith part for
i = 1, . . . , m.



It looks complicated, but it allows the computation of F(20, 2),
a number of several hundred digits, in a second or so.
If you stare at the formula you will see the technique: Möbius
inversion over the lattice of partitions of a set. But we haven’t
made it work for longer words yet!
Möbius inversion is a general technique for arbitrary partially
ordered sets which generalises the Inclusion-Exclusion
principle (the case for the lattice of subsets of a set). I have
known the form of the Möbius function for the partition lattice
for many years, but never before now did I have a chance to
use it seriously.



Counting automorphisms?

Even if we could count foldings of de Bruijn graphs, we are still
some way off a good description of automorphisms. Among
the things we would need to do are

I decide when two foldings give rise to isomorphic directed
graphs, and count these;

I decide when two transducers have the same action, and so
give rise to the same automorphism.

So we still have plenty more to do!


