
Finding where you are:
Automata, graph endomorphisms, and de Bruijn

graphs

Peter J. Cameron
University of St Andrews

NBSAN, St Andrews, 24 April 2015

m m m m000 010 101 111

m m

m m

100 110

001 011

�
��1

-1

@
@R
1

�
�	 0

�
0

@
@I

0

6

1

?

0

@
@R
0

�
�	

0

�
��1

@
@I1

. ........................
....................... ...................... ...................... ....................... ........................z

1
. ........................ ....................... ...................... ...................... .......................

........................y
0

..............................
......... ....... ...... .......0

. ....... ...... ....... .........
.............................1



Introduction

I have recently been working on two different problems in
which synchronizing automata make an appearance:
I the disproof of a conjecture about the relationship between

synchronization and primitivity for permutation groups
(with João Araújo, Wolfram Bentz, Gordon Royle and
Artur Schaefer);

I the outer automorphism groups of the Higman–Thompson
groups, which are also the automorphism groups of full
one-sided shifts, and are related to foldings of de Bruijn
graphs (with Collin Bleak).

I will give a brief introduction, and then talk about some work
on each of these two problems. (Time does not permit a
complete survey of either!)



Automata

An automaton is a black box with a finite number of internal
states. If a symbol from an alphabet is input, it undergoes a
state transition.
Our automata are very simple: they don’t have accept states,
and they don’t recognise languages; they don’t even have a
start state, you can start anywhere; and they are deterministic.
An automaton can be represented combinatorially by a
directed graph (whose vertices are the states) with edges
labelled by symbols of the alphabet, so that there is exactly one
edge with each label leaving each vertex.



An example

Here is a 4-state automaton over an alphabet of two symbols,
Red and Blue.

←

←

�
�
�
�
�
�
�
�
�
�
��

↗
.

..............................................

.............................................

...........................................

..........................................

........................................

......................................

......................................

........................................

..........................................

...........................................

.............................................

..............................................

↘

↓

↑
.

..............................................

.............................................

...........................................

..........................................

........................................

......................................

......................................

........................................

..........................................

...........................................

.............................................

..............................................

↖
↘

u u

u u1 2

34

You can check that (Blue, Red, Blue) takes you to room 1, no
matter where you start. So, if this were the map of a dungeon
in which you were lost, you could use the map to find your
way to the exit.



Synchronization

An automaton is said to be synchronizing if there is a sequence
of inputs which brings it to a known state, regardless of its
starting point. Such a sequence is called a reset word.
The example on the preceding slide had a reset word of
length 3.
The main open problem about synchronizing automata is the
Černý conjecture, which states that, if an n-state automaton is
synchronizing, then it has a reset word of length at most
(n− 1)2. If true, this would be best possible. But I am not going
to talk about this, although what I am going to say was
motivated by the conjecture.



Complexity of synchronization

If you are lost in a dungeon and have a map, you need to
decide whether the automaton is synchronizing. There is good
and bad news.
The good news is that there is a polynomial-time algorithm to
decide the question. This depends on the following fact:

Proposition

An automaton is synchronizing if and only if, for any pair of states,
there is a sequence of transitions which maps them to the same place.
By collapsing pairs n− 1 times we reach a synchronizing word.
Indeed, this gives us an cubic upper bound for the length of
such a word: n− 1 iterations of a process which takes O(n2)
steps.
The bad news is that finding the shortest synchronizing word is
NP-hard.



Automata and monoids

Algebraically, a transition is a mapping on the set of states; we
are allowed to compose transitions; so an automaton is a
submonoid of the full transformation monoid on a set of size n
with a distinguished set of generators.
In this language, an automaton is synchronizing if the monoid
contains a constant function (a map of rank 1).
Our next task is to describe the maximal non-synchronizing
automata (or monoids).



Graph homomorphisms

Graphs in the next part are simple: undirected, without loops
or multiple edges.
A homomorphism from a graph Γ to a graph ∆ is a map f from
the vertex set of Γ to that of ∆ which maps edges to edges. It
can map non-edges to non-edges, or to edges, or collapse them
to vertices.

I A homomorphism from the complete graph Kr to Γ is an
embedding of Kr in Γ; the largest such r is the clique
number of Γ.

I A homomorphism from Γ to Kr is a proper
vertex-colouring of Γ with r colours; the smallest such r is
the chromatic number of Γ.

An endomorphism of Γ is a homomorphism from Γ to itself.
The endomorphisms form a monoid End(Γ) (the
endomorphism monoid of Γ).



Synchronization and graph endomorphisms

Theorem
A transformation monoid M on Ω is non-synchronizing if and only if
there is a non-null graph Γ on the vertex set Ω such that
M ≤ End(Γ). We may assume that the clique number and chromatic
number of Γ are equal.
One direction is trivial: endomorphisms of a graph with at least
one edge cannot collapse everything to a single point.
I won’t prove the other direction; it is not difficult, but it is the
foundation of our study of synchronizing automata, and is the
basis of the most efficient test of synchronization.



Synchronizing groups

There are very few examples of synchronizing automata
attaining the Černý bound. All of them have the property that
one generator is a cyclic permutation, so the monoid contains a
transitive permutation group as a subgroup. This motivates
looking at monoids generated by a group and one further
element.
By abuse of language, we describe a permutation group G
acting on Ω as synchronizing if, for every non-permutation f ,
the monoid 〈G, f 〉 is synchronizing.
Thus, G is synchronizing if and only if it is not contained in the
automorphism group of a graph with clique number equal to
chromatic number.
The hope is that we can use knowledge of permutation groups
(acquired since the Classification of Finite Simple Groups) to
understand synchronizing groups.



Synchronization and primitivity

A permutation group is primitive if it preserves no non-trivial
partition of Ω. (The trivial partitions are the one with a single
part and the one with parts of size 1.)

Theorem
A synchronizing group is primitive.
For an imprimitive group preserves two graphs derived from
its invariant partition (the disjoint union of complete graphs on
the parts, and its complement, the complete multipartite
graphs) which have non-trivial endomorphisms.
The converse is false, but it is thought that the difference
between primitivity and synchronization is not all that great.



A conjecture

If G is primitive but not synchronizing, then a minimum-rank
map which is not synchronized is a colouring of a G-invariant
graph, and so is uniform: all kernel classes have the same size.
João Araújo conjectured that a primitive group synchronizes all
non-uniform maps.
This conjecture has just been refuted.



The conjecture bites the dust

Our first example was found in the following way. Suppose we
could find a graph with clique number and chromatic number
3, which has a primitive automorphism group, and has a
homomorphism onto the butterfly:

s s
s ss
��

�
��

�
��HHH

HHH
HH

Suppose further that the graph has valency 4 and the closed
neighbourhood of a vertex is itself a butterfly. Then it has a
non-uniform endomorphism of rank 5.
Fortunately, group theorists have determined such graphs.
There are two, with 45 and 153 vertices: the line graphs of the
Tutte–Coxeter and Biggs–Smith graphs.



A general construction

These graphs have endomorphisms of ranks 3, 5, and 7.
Another construction is much more prolific.
This uses the Cartesian product Γ� ∆ of graphs, whose vertex
set is the Cartesian product of the vertex sets, two pairs being
joined in the product if they are equal in one coordinate and
joined in the other.
If Γ has primitive automorphism group G, then Γ� Γ has
primitive automorphism group G wr C2.



An example

The graph Kk �Kk is the square lattice graph L2(k), with two
vertices joined if and only if they are in the same row or
column. It has clique number k (rows and columns are
maximum cliques) and chromatic number k (a k-colouring is a
Latin square):

x x x x
x x x x
x x x x
x x x xx
x
x
x

x
x

x
xx

x

x
x

x
x
x
x

The complementary graph also has clique number and
chromatic number k: a clique is a transversal, and the row
numbers give a proper colouring.



A prolific construction

Suppose that Γ is a graph with clique number and chromatic
number k. Then there is a homomorphism from Γ to Kk, and
hence one from Γ� Γ to L2(k).
Suppose that additionally there is a homomorphism from L2(k)
to Γ. Then we can compose

Γ� Γ→ L2(k)→ Γ→ Γ� Γ.

The rank is equal to the rank of the middle map.
For an example, we take Γ to be the complement of L2(k) (this
is the categorical product Kk × Kk). The required
homomorphism is a pair (f , g) of functions from K× K to K,
where K = {1, . . . , k}.
Each function must be a Latin square, since we require that
y 6= z implies f (x, y) 6= f (y, z), and similarly for g; but there is
no connection between the two squares.



An example

11 22 33 44
24 11 42 33
33 44 11 22
42 33 24 11

The table gives the two coordinates of the images of the
homomorphism from Kk �Kk to Kk × Kk. If two cells are in the
same row of the table, then they are adjacent in Kk �Kk, and so
their images must be adjacent in Kk × Kk; so they must differ in
the first coordinate, and also in the second coordinate.
This example gives an endomorphism of rank 6, since we hit
six different points of Kk × Kk, viz. (1, 1), (2, 2), (3, 3), (4, 4),
(2, 4) and (4, 2).



The possible ranks of maps constructed in this way are the
numbers of pairs of entries when two Latin squares of order k
are superimposed.
Colbourn, Zhu and Zhang have showed that, if k > 6, then any
number between k and k2 except for k + 1 and k2 − 1 can occur
as the number of distinct entries when two Latin squares of
order k are superimposed.
So we have a primitive group of degree k4 which fails to
synchronize maps of every possible rank between k and k2

inclusive except for k + 1 and k2 − 1.
Many more examples can no doubt be found . . .



Another conjecture

We saw that, if G is imprimitive, preserving a relation with m
equivalence classes of size k, then G preserves the disjoint
union of m copies of Kk, and also its complete bipartite
complement. These graphs have endomorphisms whose ranks
are all multiples of k (for mKk) and all integers between m and
mk = n (for the complete multipartite graph). This gives
(3/4− o(1))n ranks of maps not synchronized by G.
We conjecture that, if G is primitive, there are only o(n) ranks of
maps which it does not synchronize.
For our example, this number is about

√
n.



Some groups

I now turn to the second part of the talk.
The Higman–Thompson groups are a family (Gn,r) of finitely
presented infinite simple groups. They have several definitions,
in terms of homeomorphisms of Cantor space, or
manipulations of trees, or as automorphism groups of free
algebras in certain varieties.
Bleak, Maissel and Navas investigated the outer automorphism
group of Gn,r. They showed several things:
I Out(Gn,r) is independent of r;
I this group is a subgroup of the automorphism group of the

full (two-sided) shift on an alphabet of size n;
I its elements can be realised by transducers acting on

strings over an n-letter alphabet.
A transducer is an automaton which writes as well as reading.



Finitely-determined automata

A transducer representing an invertible transformation must
have the property that the “inverse” (reversing the writing and
reading operations) is also a transducer. Thus it is constructed
from a pair of automata with the same underlying graph.
We say that an automaton is k-determined if every word of
length k is a reset word for it. In other words, when it reads k
symbols, the state it is in depends only on the symbols read,
and not on the state it was in before reading them.
The automata involved in automorphisms of the
Higman–Thompson groups turn out to be finitely determined.
So we need to examine these further.



De Bruijn graphs
The de Bruijn graph DBn,k with word length k over an alphabet
A of size n is defined as follows.
I The vertex set consists of all the words of length k.
I There is an edge from x1x2 . . . xk to x2x3 . . . xk+1, whose

label is the (k + 1)-tuple x1x2 . . . xkxk+1.
Since we want single symbols as labels, we will use just xk+1 for
this edge.
Here is the de Bruijn graph DB2,3.

���� ���� ���� ����000 010 101 111

���� ����

���� ����

100 110

001 011

�
�
��1

-1

@
@
@R

1

�
�
�	

0
�

0

@
@
@I

0

6

1

?

0

@
@
@R

0

�
�
�	

0

�
�
��

1

@
@
@I

1

. .................................
................................ ............................... ............................... ................................ .................................z

1

. ................................. ................................ ............................... ............................... ................................
.................................y

0

.........................................
...... ...... ......... ...... ...... .......
0

. ....... ...... ...... ......... ...... ......
........................................

1



These graphs were originally used to constuct universal
sequences. A de Bruijn sequence over A is a cyclic sequence of
length nk+1 over A, with the property that each word of length
k + 1 occurs precisely once as a (consecutive) subsequence.
The existence of de Bruijn sequences is immediate from the fact
that the de Bruijn graph is strongly connected and has
in-degree and out-degree equal, so is Eulerian; a Eulerian cycle
gives the required sequence.
(An Eulerian cycle is a cycle passing once through each
directed edge, in the correct direction; a directed graph has an
Eulerian cycle if and only if it is strongly connected and has the
in-degree of each vertex equal to its out-degree – an obvious
necessary condition).
For us the crucial property (from which the strong
connectedness follows) is that, regarded as an automaton over
the alphabet A, the de Bruijn graph DBn,k is k-determined.



Foldings of de Bruijn graphs

A folding of DBn,k is an equivalence relation ≡ on the vertex set
with the property that, if v ≡ w, then for any symbol a, the
vertices obtained by moving along edges labelled a from v and
w are also equivalent.

I The quotient of DBn,k by a folding is a k-determined
automaton.

I Every k-determined automaton (in which every state is
reachable) arises in this way.

So in order to study k-determined automata over A, we simply
have to study foldings of DBn,k.



Counting foldings

“I count a lot of things that there’s no need to count,”
Cameron said. “Just because thats the way I am. But I
count all the things that need to be counted.”

Richard Brautigan, The Hawkline Monster: A Gothic
Western

If we really understand foldings, we should be able to count
them. Let F(n, k) be the number of foldings of DBn,k.
Trivially, F(n, 1) is the Bell number B(n) (the number of
partitions of the alphabet).

n \ k 1 2 3 4
2 2 5 30 1247
3 5 192 ? ?
4 15 78721 ? ?
5 52 519338423 ? ?



Word length 2

All but one of the results in the table were found by brute-force
computation. However, we have found a formula for F(n, 2):

Theorem
Let

R(s, t) = ∑
π

(−1)|π|−1(|π| − 1)!
|π|

∏
i=1

B(ais),

where π runs over all partitions of {1, . . . , t}, |π| is the number of
parts of π, and ai is the size of the ith part. Then

F(n, 2) = ∑
π

s

∏
i=1

R(m, ai),

where π runs over all partitions of the n-letter alphabet, m is the
number of parts of π, and ai is the cardinality of the ith part for
i = 1, . . . , m.



It looks complicated, but it allows the computation of F(20, 2),
a number of several hundred digits, in a second or so.
If you stare at the formula you will see the technique: Möbius
inversion over the lattice of partitions of a set. But we haven’t
made it work for longer words yet!
Möbius inversion is a general technique for arbitrary partially
ordered sets which generalises the Inclusion-Exclusion
principle (the case for the lattice of subsets of a set). I have
known the form of the Möbius function for the partition lattice
for many years, but never before now did I have a chance to
use it seriously.



Counting automorphisms?

The obvious next step is to find formulae for the number of
foldings of de Bruijn graphs with arbitrary word length.
Even if we could do this, we are still some way off a good
description of automorphisms. Among the things we would
need to do are
I decide when two foldings give rise to isomorphic directed

graphs, and count these (since a transducer consists of two
automata with isomorphic graphs);

I decide when two transducers have the same action, and so
give rise to the same automorphism.

So we still have plenty more to do!


