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Jack Edmonds will give two courses in London in June:
I At Queen Mary, University of London, 16–19 June:

Combinatorial structure of paths, network flows, marriage,
routes for Chinese postmen, traveling salesmen, and itinerant
preachers, optimum systems of trees and branchings. (Contact:
Alex Fink)

I At the London Taught Course Centre, 22–23 June (an LTCC
Intensive): Combinatorial structure of submodularity, matroids,
learning, transferable & other n-person games, bimatrix games
and Nash equilibria. (Contact: Nisha Jones)



Sampling formulae

In how many ways can we sample k objects from a set of size n?
As is well known, we have to be more precise about how we
sample: with or without replacement, and order significant or
not?

Order Order
significant not significant

With replacement nk
(

n + k− 1
k

)
Without replacement n(n− 1) · · · (n− k + 1)

(
n
k

)



Structure v symmetry

The rows of the table on the previous slide tell us something
about structure. In the first row there is no restriction, but in
the second row the selected items are required to be distinct.
The columns describe how symmetry enters the count. In the
first column, we pay no attention to it, but in the second, two
selections differing only by a permutation are counted as being
the same.
Structure and symmetry are two threads that run through
combinatorics (and indeed much of mathematics), and what
follows is my attempt to handle both at the same time (in a few
special situations).



Chromatic polynomial

The entries in the first column of the table can be interpreted in
another way.
The chromatic polynomial of a graph Γ is the polynomial PΓ(x)
whose evaluation at a positive integer q gives the number of
proper colourings of the vertices with q colours – adjacent
vertices must have different colours.
It is a monic polynomial whose degree is the number of
vertices of Γ.
So the entries in the first column of the table are evaluations of
the chromatic polynomials of the null and complete graphs on k
vertices at the value n: the null graph gives no restriction, while
the complete graph requires the colours used to be distinct.
The second column counts such colourings up to permutations
of the vertices of the graph.



Orbital chromatic polynomial

Our first result combining structure and symmetry is the
orbital chromatic polynomial. This is a polynomial PΓ,G(x)
associated with a graph Γ and a group G of automorphisms of
Γ (which may or not be the full automorphism group) with the
property that, for a positive integer q, the evaluation PΓ,G(q) is
the number of orbits of G on propert q-colourings of Γ.
It is a polynomial with degree equal to the number of vertices
of Γ and leading coefficient 1/|G|.
Thus, the second column of our table gives the orbital
chromatic polynomials for Γ the null or complete graph on k
vertices and G the symmetric group Sk.



To construct the orbital chromatic polynomial, we use the
orbit-counting lemma, which asserts that the number of orbits
of a finite group G on a finite set X is equal to the average
number of fixed points of elements of G.
We take X to be the set of proper q-colourings of Γ, so that
|X| = PΓ(q).
Consider an element g ∈ G. If a colouring of Γ is fixed by G,
then it is constant on the cycles of G, and so it induces a
colouring of the graph Γ/g obtained by shrinking each cycle to
a vertex. (If a cycle of g contains an edge of Γ, then there are no
fixed colourings, which we can account for by putting a loop
on the vertex obtained by contracting this cycle.)
Thus

PΓ,G(q) =
1
|G| ∑

g∈G
PΓ/g(q),

giving the required polynomial.



A special case

Consider our earlier example (with a small change in notation),
where Γ is the null graph on n vertices and G the symmetric
group Sn. Every colouring is proper, and Γ/g is the null graph
on the number of vertices equal to the number of cycles of g.
So, if u(n, k) is the unsigned Stirling number of the first kind,
the number of permutations on n points with k cycles), then

1
n!

n

∑
k=1

u(n, k)qk =

(
q + n− 1

n

)
.

Multiplying by n!, we obtain

n

∑
k=1

u(n, k)qk = q(q + 1) · · · (q + n− 1).

Replacing q by −q and multiplying by (−1)n gives the more
familiar formula involving the signed Stirling numbers.



What if names of colours don’t matter?

A colouring is a function from vertices to colours. We have
discussed symmetries of the graph (as permutations of the
vertices). What if permutations of colours are allowed, in other
words, we only care about the partition into independent sets
(colour classes)?
We can’t simply divide by q!, where q is the number of colours.
This is because some colours may not occur. So first we have to
count colourings in which every colour occurs. This is a job for
the inclusion-exclusion principle:

P∗Γ(q) =
q

∑
i=0

(−1)q−i
(

q
i

)
PΓ(q− i).

Then the number of partitions of the graph into q independent
sets is just PΓ(q)/q!.



Combining?

Given a graph Γ and a group G of automorphisms of Γ, can we
count the orbits of G on partitions of Γ into q independent sets?
I don’t know a “polynomial” method of doing this. An
interesting unsolved problem, perhaps!
For graphs which are not too large, it can be done by brute
force, by simply computing all such partitions and splitting
them into orbits for the group.



The Petersen graph

I will illustrate with the Petersen graph:

As is well known, its automorphism group has order 120 and is
isomorphic to the symmetric group S5.



Chromatic polynomial

For the Petersen graph, the chromatic polynomial is

PX(q) = q(q− 1)(q− 2)×
(q7 − 12q6 + 67q5 − 230q4 + 529q3 − 814q2 + 775q− 352).

We see that the least number of colors required for a proper
coloring (the smallest q for which this is non-zero) is 3, and the
number of proper colorings for q up to 10 is given in the
following table:

q 3 4 5 6 7 8 9 10
PΓ(q) 120 12960 332880 3868080 27767880 144278400 594347040 2055598560



Orbital chromatic polynomial
The only automorphisms whose cycles contain no edges are
those corresponding to the identity, transpositions, and 3-cycles
in S5. The graphs X/g for the second and third of these are
shown:
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We find that the orbital chromatic polynomial is

PΓ,G(q) = q(q− 1)(q− 2)×
(q7 − 12q6 + 67q5 − 220q4 + 469q3 − 664q2 + 595q− 252)/120.

The values for 3 to 10 colors are
q 3 4 5 6 7 8 9 10

PΓ,G(q) 6 208 3624 36654 248234 1254120 5089392 17449788



Partitions into independent sets

The numbers of such partitions with q parts are now easily
found:

q 3 4 5 6 7 8 9 10
P∗Γ(q)/q! 20 520 2244 2865 1435 315 30 1

The numbers up to automorphisms of the graph are less easy to
compute. Here are the results:

q 3 4 5 6 7 8 9 10
P∗Γ,G(q) 1 10 30 36 20 7 1 1

Notice how much smaller the numbers are!



Acyclic orientations

An orientation of the edges of a graph Γ is acyclic if there are no
directed cycles.
A theorem of Richard Stanley asserts that the number of acyclic
orientations of Γ is (−1)nPΓ(−1), where n is the number of
vertices.
Thus, the Petersen graph has 16680 acyclic orientations.
However, it is not true that the number of G-orbits on acyclic
orientations is obtained by substituting −1 into the orbital
chromatic polynomial.



What we have to do is to define a twisted orbital chromatic
polynomial

P†
Γ,G(x) =

1
|G| ∑

g∈G
σ(g)PΓ/g(x),

where σ is the sign of the permutation g; in other words,
change the sign of terms coming from odd permutations.
Then the number of G-orbits on acyclic orientations is
(−1)nP†

Γ,G(−1).
In particular, the number of orbits of acyclic orientations of the
Petersen graph is 168.



Beyond chromatic polynomial

There are several possible directions for extending the idea of
the orbital chromatic polynomial. Among these are:

I the Tutte polynomial of a graph or matroid, a two-variable
generalisation of the chromatic polynomial of a graph;

I the cycle index of a permutation group, a multi-variable
polynomial which is useful for a very general class of
enumeration problems;

I counting graph homomorphisms, noting that proper
colourings of Γ are homomorphisms from Γ to a complete
graph.

I will briefly discuss these issues. There is more to be said than
I can cover here!



Flows and tensions

In this section, given a graph Γ, we will suppose that we have
chosen an orientation of the edges of Γ which is fixed
throughout the discussion. Our results will not depend on this
orientation.
Let A be a finite abelian group, with identity element 0.
An A-flow on Γ is a function f from directed edges of Γ to A
with the property that the signed sum of the values of f on
edges at each vertex v (with sign + for edges entering A and −
for edges leaving) is 0.
An A-tension on Γ is a function t from directed edges of Γ to A
with the property that the signed sum of the values of f around
any circuit in Γ (with sign + for edges in the same direction as
the circuit, − for edges in the opposite direction) is 0.
A flow or tension is nowhere-zero if it never takes the value 0.
Note that reversing the orientation of an edge and negating the
value of the function on that edge preserves the property of
being a (nowhere-zero) flow or tension.



There is a close connection between tensions and colourings.
The number of nowhere-zero tensions is q−κPΓ(q), where
q = |A| and κ is the number of connected components of Γ. In
particular, it is independent of the structure of A, depending
only on its order.
Bill Tutte showed that the number of nowhere-zero flows is
also independent of the structure of A, and is a polynomial in
q = |A|.
One of the big open questions raised by Tutte is whether every
bridgeless graph has a nowhere-zero flow over the cyclic group
of order 5.



An orbital version

With Bill Jackson and Jason Rudd, I found orbital versions of
the tension and flow polynomials, counting orbits of G on
nowhere-zero tensions or flows over A. (The convention is that
if a graph automorphism reverses the orientation of an edge, it
negates the value of the tension or flow on that edge.)
It turns out that these polynomials are multivariate, with
(potentially) countably many variables x0, x1, x2, . . .. To obtain
the required orbit numbers, we have to substitute for xk the
number of solutions of ka = 0 in the abelian group A. So in
general the result does depend on the structure of A.
But only those xi with i = 0 or i | |G| occur, which explains why
the answer doesn’t depend on A if G is the trivial group.



Cycle index

Let G be a permutation group on a set Ω of size n. For each
g ∈ G, the cycle index of G is the monomial which records the
cycle lengths:

z(g) = sc1
1 · · · s

cn
n ,

where ci is the number of cycles of length i.
The cycle index of G is obtained by averaging:

Z(G) =
1
|G| ∑

g∈G
z(g).

This multivariate polynomial, invented by Redfield and Pólya
and developed by de Bruijn and others, is useful in many orbit
counting problems.



Cycle index theorem

Let F be a set of figures with non-negative integer weights, and
let A(x) be the generating function ∑ aixi, where ai is the
number of figures of weight i. A configuration is a function
from Ω to F (think of attaching a figure at each point), and has a
weight obtained by summing the weights of all the figures.
Let bi is the number of orbits of G on functions of weight i, and
B(x) = ∑ bixi.

Theorem

B(x) = Z(G)(A(x), A(x2), . . . , A(xn)).



Cycle index and Tutte polynomial

For some very special types of group, I was able to produce a
polynomial which specialised both to the cycle index of the
group and to the Tutte polynomial of an associated matroid.
These are the so-called IBIS groups, invented by Dima
Fon-Der-Flaass and me.



Bases

A base for a permutation group is a sequence of points of the
domain whose pointwise stabiliser is the identity. Bases are
important in computational group theory. A base (x1, . . . , xb) is
irredundant if no point xi is fixed by the stabiliser of its
predecessors.
Irredundant bases in general lack the nice properties of matroid
bases. But Dima and I proved the following theorem:

Theorem
For a permutation group G on Ω, the following conditions are
equivalent:
1. all irredundant bases have the same size;
2. the irredundant bases are preserved by re-ordering;
3. the irredundant bases are the bases of a matroid.

A permutation group satisfying these conditions is called an
IBIS group (for “Irredundant Bases of Invariant Size”).



Graph homomorphisms

My final topic concerns counting graph homomorphisms.
A homomorphism from a graph Γ to a graph ∆ is a map from
the vertices of Γ to those of ∆ which maps edges to edges.
(What it does to non-edges is not specified: a non-edge may
map to a non-edge, or to an edge, or collapse to a single vertex.)
A homomorphism from Γ to a complete graph Kq with q
vertices is just a proper colouring of Γ with q colours. So the
counting problem extends the chromatic polynomial, and we
would like to have an orbital version.
Homomorphism counting has been studied by Delia Garijo,
Andrew Goodall, and Jarik Nešetřil. The orbital version has not
been studied . . .
This topic is also related to the important theory of graph limits
developed by László Lovász and various collaborators.



Acting on both sides

We saw in the case of the chromatic polynomial that it is
interesting to count orbits on colourings of the automorphism
group of the graph, the symmetric group on the set of colours,
or the combination of the two groups.
A similar thing happens here. If F(Γ, ∆) denotes the set of
homomorphisms from Γ to ∆, then

I the automorphism group of Γ acts on homomorphisms by
permuting the arguments: f g(v) = f (vg−1);

I the automorphism group of ∆ acts by permuting the
values: f h(v) = f (v)h.

So after counting homomorphisms, we have three
orbit-counting problems to solve . . .



Graph endomorphisms

An endomorphism is a homomorphism from a graph to itself.
The important new feature here is that, as well as the counting
problem, we have algebraic structure: endomorphisms can be
composed, and form a monoid (a semigroup with identity),
called the endomorphism monoid of the graph.
For some particular graphs, endomorphisms describe
well-studied combinatorial problems, and the algebraically
defined classes turn out to be orbits of suitable group actions.



An example: Latin squares

The square lattice graph L2(n) has as vertices an n× n grid,
with two vertices adjacent if they lie in the same row or
column. It is the line graph of the complete bipartite graph Kn,n.
The graph has clique number and chromatic number n: the
n-cliques are the rows and columns of the grid.
It can be shown that any endomorphism which is not a
homomorphism is an colouring: its image is an n-clique in the
graph, and if we number its vertices from 1 to n and then label
every vertex of the graph with its preimage, we obtain a Latin
square (see next slide).
Every Latin square arises in this way.
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