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Polytopes are objects which have combinatorial, geometric and
algebraic aspects.
I will be particularly concerned with regular polytopes, which
are generalisations of the classical regular polyhedra in 3-space.
They are polytopes which have the maximal amount of
symmetry (in a precise sense), and not surprisingly their study
has very close connections with group theory.
However, there are many questions here which haven’t been
very much considered by group theorists.
I begin with something that seems at first glance to have
nothing at all to do with polytopes, but there is a connection . . .



Independent generating sets

Let G be a finite group. A set {g1, . . . , gr} of elements of G is
independent if none of the elements lies in the subgroup
generated by the others. It is an independent generating set if,
in addition, the whole set generates the group G.
Thus independent generating sets resemble bases for vector
spaces in elementary linear algebra. However, they do not have
the nice properties of bases such as the exchange property, and
so they are not the bases of a matroid.



In the symmetric group

Theorem (Julius Whiston, 2000)

The largest size of an independent set in the symmetric group Sn is
n− 1; equality holds if and only if the set is an independent
generating set.
In 2002, Philippe Cara and I found all the independent
generating sets of size n− 1 in Sn, for n ≥ 7. There are two
types:

I The first type consists of the transpositions corresponding
to the edges of a tree on n vertices.

I The second type contains one transposition; the other
elements are 3-cycles and double transpositions. These
will not be relevant in what follows.

There are a few extra types for small n. For example, for n = 6,
we can take images of the above types under the outer
automorphism of S6.



Subgroup lattices

Let L(G) denote the subgroup lattice of the group G.

Proposition

For any finite group G, the Boolean lattice B(r) is embeddable as a
meet-semilattice of L(G) if and only if it is embeddable as a
join-semilattice of L(G). The largest number r for which these
equivalent properties hold is equal to the size of the largest
independent subset of G.
If {g1, . . . , gr} is an independent set in G, then the subgroups
generated by its subsets form a join-semilattice of L(G)
isomorphic to B(r).
Note that the above conditions are not equivalent to the
embeddability of B(r) in L(G) as a lattice!



Digression: longest chain

A related parameter of the subgroup lattice of a group is the
length of the longest chain of subgroups.
This parameter for the symmetric group is of interest in
computational group theory (it is an upper bound for base
size), and Babai gave an upper bound 2n− 3 for it.
I found the exact value in 1982; it is published in a paper with
Ron Solomon and Alexandre Turull. It is

l(Sn) =

⌈
3n
2

⌉
− b(n)− 1,

where b(n) is the number of 1s in the base 2 representation of n.
Sub-digression: Max Gadouleau, James Mitchell, Yann Peresse
and I have similar results for sub-semigroup chains in various
important semigroups.



Polytopes

A polytope of dimension r is a generalisation of polygon (in
2 dimensions) or polyhedron (in 3 dimensions) to arbitrary
dimension.
It can be regarded as a partially ordered set (the elements are
the faces of various dimensions) in which all maximal chains
contain r + 2 elements (including a bottom element ∅ of
dimension −1 and a top element of dimension r which
represents the whole polytope). Each element can be assigned a
unique dimension, corresponding to the position it occupies in
a maximal chain. Elements of dimenion 0, 1, 2 are vertices,
edges, and faces.
The maximal chains are called flags.
We require several further conditions (see next slide).



I For i < j < k, if x, y, z are elements of dimensions i, j, k with
x ≤ y and y ≤ z, then x ≤ z.

I If x and y have dimensions i and i + 2 and x < y, then there
are just two elements z satisfying x < z < y.

I A strong connectedness condition: if F and G are two flags,
then there is a sequence of flags beginning at F and ending
at G, such that consecutive members intersect in all but one
of their elements, and that F∩G is contained in every flag
in the sequence.

The poset obtained by reversing the order is also a polytope,
called the dual of the original.
If x and y are elements of a polytope with x < y, then the
interval [x, y] = {z : x ≤ z ≤ y} is itself a polytope, of
dimension dim(y)− dim(x)− 2. In particular, if
dim(y)− dim(x) = 3, then [x, y] is a polygon.



Regular polytopes

If two flags (x−1, x0, . . . , xi−1, xi, xi+1, . . . , xr) and
(x−1, x0, . . . , xi−1, yi, xi+1, . . . , xr) differ only in the element of
dimension i, then any automorphism which fixes the first flag
also fixes the second.
Hence, using the strong connectedness property, any
automorphism which fixes a flag must fix every flag, and hence
is the identity.
A polytope is regular if the automorphism group acts
transitively on the flags. In this situation, the action of the
group is regular: there is a bijection between flags and
automorphisms. (We fix a reference flag F, and then identify F′

with the unique automorphism mapping F to F′.)
If a polytope is regular, then for any i, if dim(x) = i− 1,
dim(y) = i + 2, and x < y, then [x, y] is a pi-gon, where pi
depends on i but not on x and y. The vector (p0, p1, . . . , pr−1) is
the Schläfli symbol of the polytope.



String C-groups

Because of the correspondence between the set of flags and the
automorphism group G of a polytope, it is possible to translate
everything into the group. We will see that the existence of a
regular polytope is equivalent to a sequence of group elements
with certain properties.
To motivate this, consider the cube.
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Our reference flag is (∅, v, e, f , C) (where C denotes the cube).
Let sv, se and sf be the automorphisms mapping it to
(∅, v′, e, f , C), (∅, v, e′, f , C) and (∅, v, e, f ′, C) respectively.
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Now sv maps v′ back to v, and so s2
v = 1; similarly s2

e = s2
f = 1.

Also svse rotates the square face f one step clockwise, and so
(svse)4 = 1. Similarly (sesf )

3 = 1. And sv and sf both fix e, and
so they commute: (svsf )

2 = 1.



More generally, we define a string C-group to be a finite group
generated by elements s0, s1, . . . , sr−1 satisfying the conditions

I s2
i = 1.

I si and sj commute if |i− j| > 1 (the string condition).
I For I ⊆ {0, . . . , r− 1}, let SI denote the subgroup generated

by {si : i ∈ I}. Then SI ∩ SJ = SI∩J for any I and J (the
intersection condition).

Theorem
The existence of a regular polytope with automorphism group G is
“equivalent” (in a suitable sense) to a representation of G as a string
C-group.



Note that the order of sisi+1 is the ith component of the Schläfli
symbol of the polytope.
We do not insist that si and sj fail to commute if |i− j| > 1. In
other words, we allow degenerate polytopes where some of the
polygons are digons. This might seem to make things harder,
but actually makes them much easier. The subgroup generated
by a subset of {s0, . . . , sr−1} is a string C-group in its own right,
so we have the possibility of induction!
Also, we do not assume that the orders of the si and sisj give a
presentation of a group. (If they do, then the group is a Coxeter
group.)
Finally, the intersection condition shows that {s0, . . . , sr−1} is an
independent generating set for G. Indeed, it is stronger: it is
equivalent to the condition that the map I 7→ GI embeds the
Boolean lattice B(r) as a sublattice of the subgroup lattice L(G)
of G.



The symmetric group, 1

It follows from Whiston’s theorem that the dimension of a
polytope with autmorphism group Sn is at most n− 1. It
further follows from the theorem of Cameron and Cara that
there is a unique such polytope of dimension n− 1. (The
condition that generators are involutions rules out the second
type; the string condition shows that the tree is a string.) The
generators are si = (i + 1, i + 2) for i = 0, . . . , n− 2.
The corresponding polytope is the regular (n− 1)-simplex,
whose faces are all the subsets of {1, . . . , n}.



The symmetric group, 2

Fernandes, Leemans and Mixer asked about regular polytopes
of smaller dimension r with group Sn. They computed the
following table:

n\r 3 4 5 6 7 8 9 10 11 12 13
5 4 1 0 0 0 0 0 0 0 0 0
6 2 4 1 0 0 0 0 0 0 0 0
7 35 7 1 1 0 0 0 0 0 0 0
8 68 36 11 1 1 0 0 0 0 0 0
9 129 37 7 7 1 1 0 0 0 0 0
10 413 203 52 13 7 1 1 0 0 0 0
11 1221 189 43 25 9 7 1 1 0 0 0
12 3346 940 183 75 40 9 7 1 1 0 0
13 7163 863 171 123 41 35 9 7 1 1 0
14 23126 3945 978 303 163 54 35 9 7 1 1



We see the entries 1 for r = n− 1 corresponding to the regular
simplices, and we have seen that there are no more. Note also
the entries 1 for r = n− 2, n ≥ 7; 7 for r = n− 3, n ≥ 9; 9 for
r = n− 4, n ≥ 11; and 35 for r = n− 5, n ≥ 13.
This suggests the conjecture:

Conjecture

Given k, there is a number N(k) such that, for n ≥ 2k + 3, the
number of regular polytopes of dimension n− k with automorphism
group Sn is N(k).
Fernandes, Leemans and Mixer have established this conjecture
for k ≤ 4, with the values of N(k) given above.



The alternating groups

We saw that regular polytopes with a given group (like Sn) can
be studied by induction, using the fact that any subset of the
generators of the string C-group themselves generate a smaller
string C-group.
Fernandes, Leemans and Mixer examined the alternating group
An. They conjectured that the largest dimension of a regular
polytope with group An is b(n− 1)/2c for n > 11. (There is an
exceptional example of rank 6 for A11.) They managed to
construct examples meeting the conjectured bound.
This, incidentally, shows that there is a big difference between
largest dimension of a polytope with group G, and largest
independent generating set for G (which is n− 2 for G = An).



A theorem

At the end of a month’s very hard work in Aveiro (building on
what the other three had done over several years), we believe
we have proved the conjecture:

Theorem
For n > 11, the largest rank of a regular polytope with automorphism
group An is b(n− 1)/2c.
We are not yet ready to say for sure that we have a proof: the
paper will be nearly 50 pages long, and we finished going
through it at 16:45 on Friday 16 October; Dimitri and I left
Aveiro at the weekend. There are some small gaps which we
believe we know how to fill.



Some words about the proof

Let Γ be a string C-group with generators {ρs : s ∈ S} which is
isomorphic to the alternating group An. For i ∈ S, let
Γi = 〈ρs : s 6= i〉.
We divide the analysis into three cases:

I some Γi is primitive (in its action in {1, . . . , n});
I some Γi is transitive imprimitive;
I all Γi are intransitive.

I will say a few words about each case. Note that several small
cases are handled by computer.



Γi primitive

For primitive groups, it follows from CFSG that they are small:
with “known” exceptions, they have order at most n1+log2 n.
(The most precise form of this result is due to Attila Maróti.)
On the other hand, a string C-group of rank r clearly has order
at least 2r; and if the diagram is connected, Marston Conder
improved this lower bound to a best-possible result 4r/2 for
n ≥ 9.
A small amount of further trickery gives the result in this case.



Γi transitive imprimitive

Choose maximal blocks for Γi, so that the action on the blocks is
primitive. Suppose that there are m blocks, each of size k.
Let L be a subset of S which forms an independent generating
set for the action on blocks; C the set of elements of S
commuting with every element of L; and R the remainder of S.
Then

I |L| ≤ m− 1;
I 〈C〉 acts in the same way on each block, so |C| ≤ k− 1;
I either L is disconnected or |R| ≤ 2.

If L is disconnected then the primitive group on blocks is a
direct product, so |L| ≤ 2 log2 m. Otherwise we have
r ≤ k + m + 1, which gives the required result unless k = 2 or
m = 2 or finitely many others. These cases require special
treatment.



All Γi intransitive

In this case, each generator ρi interchanges points in different
Γi-orbits. We construct an edge-labelled graph with label set S
(called a fracture graph) by choosing one such transposition for
each i (labelled i).
The rest of the argument (by far the longest part) involves
careful analysis of the fracture graphs.
The easier case is when, for each i, there are at least two
ρi-edges joining points in different Γi-orbits. In this case we
construct a 2-fracture graph by choosing two such edges. We
show it is possible to choose such a graph so that one
component is a tree and all others have at most one cycle. Then
2r (the number of edges) does not exceed n− 1, and we have
the result.


