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Permutations and substitutions

In Galois’ time, the word permutation meant an arrangement,
typically of the first n natural numbers; the word substitution
meant the operation of rearranging these numbers, that is, the
bijective function from {1, . . . , n} to itself mapping i to the ith
number in the arrangement.
Now the word “substitution” has been lost, and “permutation”
has to do duty in both senses.
So, when Galois wrote about groupe de substitutions, he means
what we now call a permutation group.
We sometimes distinguish the two senses by talking about the
“active” and “passive” forms of a permutation. Typically
permutation group theory takes the first form, and
permutation pattern theory the second.



Permutations as relational structures

Everyone here understands the order relation on permutations:
for example, 132 4 2413. A permutation pattern class is a set C
of permutations with the property that, if π ∈ C and σ 4 π,
then σ ∈ C.
There is actually a way to regard a permutation as a
mathematical structure similar to a graph, tournament, poset,
etc., so that the relation of “subpattern” is the exact analogue
of, say, “induced subgraph”.
A permutation is a set X with a pair (<1,<2) of total orders.
Assuming for the moment that X is finite, each order <i
establishes a bijection between X and {1, . . . , n}, where n = |X|.
The composition of the inverse of the first bijection with the
second gives the permutation in the usual sense.
Thus, the permutation 2413 is represented by taking
X = {a, b, c, d}, with a <1 b <1 c <1 d and b <2 d <2 a <2 c. The
involvement 132 4 2413 is seen by considering the induced
substructure on {b, c, d}.



Nothing new

This is actually common practice already. Permutations arise
when the labels in a labelled structure can be read in two
different ways:

I Given a word with no repeated letters, we can order the
letters alphabetically or in the order they occur: for
example GALOIS gives us the permutation 214536.

I The vertices of a labelled tree can be read in depth-first or
breadth-first order.

I Computational devices which re-order strings: the terms
have an input and an output order.

I We saw a related example in Monday’s talk by Manda
Riehl.



More generally . . .

Now there is a natural way to generalise permutations to what
might be called multipermutations. One of these is just a set
carrying a k-tuple of total orders.
We can ask much the same questions about multipermutations
as we do about permutations. But maybe we shouldn’t be too
surprised if these objects don’t have ready-made applications
the way permutations do . . .
The conference logo really exemplifies the case k = 3, since the
letters are ordered alphabetically as well as in the two words of
the title.



Relational structures

The context for these objects is the theory of relational
structures, or relations for short (as Roland Fraı̈ssé called them
in his influential book Theory of Relations.
A relational structure S is just a first-order structure over a
language containing no constant or function symbols. In other
words, it consists of a set Ω carrying a collection of (named)
relations. Graphs, directed graphs, posets are examples, and
with the above interpretation also permutations and
multipermutations.



Ages

Unlike common practice in logic, I will allow the empty set to
carry a relational structure (but I forbid nullary relations, so
there is only one structure on the empty set).
A substructure of S will always be an induced substructure; in
other words, given a subset, we take all instances of the
relations within that subset.
Fraı̈ssé introduced some idiosyncratic terminology for
studying these structures. The age of a relational structure S is
the class Age(S) of all finite relational structures (over the same
language) which are embeddable in S.



Recognising an age

Two obvious necessary conditions for a class C of finite
relational structures to be an age are:
(A1) C is closed under isomorphism;
(A2) C is closed under taking substructures.
I will always assume that structures are no larger than
countably infinite. With this assumption, we also have:
(A3) C has only countably many members (up to isomorphism).
For example, the class of finite metric spaces is not the age of
any countable metric spaces, since there are uncountably many
two-point metric spaces. (It is however the age of the
celebrated Urysohn space: but that is another story!)



The joint embedding property

There is another, less obvious condition, satisfied by an age, the
joint embedding property or JEP:
(A4) For any B1, B2 ∈ C, there exists C ∈ C such that B1 and B2

are both embeddable in C.

Theorem
A class of finite relational structures is the age of some countable
structure if and only if it has properties (A1)–(A4).
The proof is just what Wilfrid Hodges described as “shovelling
everything in”.
The countable structure is usually far from unique. There are
many countable graphs which embed all finite graphs.



Permutations

As you will have recognised, a permutation pattern class is a
set of finite permutations satisfying (A1) and (A2). (We can blur
the distinction between “class” and “set”, since any class
satisfying (A1) has a unique member of each isomorphism class
for which the domain is {1, . . . , n} and <1 is the natural order.
Note also that (A3) is vacuous for permutation pattern classes.)
The case for permutations of the above theorem is Theorem 1.2
of the paper of Atkinson, Murphy and Ruškuc in 2005. They
give four equivalent conditions of which condition 3 is the JEP.
These authors call a permutation pattern class satisfying the
JEP an atomic class, since it cannot be broken into two
subclasses both satisfying (A1) and (A2).



The amalgamation property

Fraı̈ssé proposed the following strengthening of the JEP, known
as the amalgamation property, or AP.

(A5) Given A, B1, B2 ∈ C, with embeddings fi : A→ Bi for
i = 1, 2, there exists C ∈ C and embeddings gi : Bi → C
such that f1g1 = f2g2.

This means that two structures in C containing isomorphic
substructures can be “glued together” along the isomorphism
inside a structure in C.
Our convention about the empty set means that the AP implies
the JEP; but be warned, not everybody does this, and often the
JEP is needed as an extra condition.
What does the AP do for us?



Homogeneous structures

A relational structure S on Ω is homogeneous if any
isomorphism between finite substructures of S can be extended
to an automorphism of S.
This is a very strong symmetry condition. Fraı̈ssé proved:

Theorem
A class C of finite relational structures is the age of a countable
homogeneous relational structure S if and only if it satisfies
(A1)–(A3) and (A5).
Moreover, if these conditions hold, then S is unique up to
isomorphism.
A class satisfying (A1)–(A3) and (A5) is called a Fraı̈ssé class,
and the unique countable homogeneous structure S of which it
is the age is its Fraı̈ssé limit.



Examples

The most famous example of a countable homogeneous
structure is (Q,<), the rationals as ordered set. This structure
was famously characterised by Cantor as the unique countable
dense ordered set without endpoints. (These conditions are
special cases of the the AP.)
The homogeneity is shown as follows. Given two finite subsets
of Q, the unique order-isomorphism between them is given by
a a piecewise-linear map which translates the two ends of the
interval.
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(Q,<) is the only countable homogeneous total order, and so
the class of all finite total orders is the only Fraı̈ssé class.



Permutations

The class of all finite permutations is a Fraı̈ssé class, and its
Fraı̈ssé limit is a very interesting object, which I will call the
generic permutation.
It is a countable set carrying two total orders, both isomorphic
to the order on Q, with the property that any interval in one of
the orders, no matter how short, is dense in the other order.
Unfortunately it is the only interesting homogeneous
permutation:

Theorem
There are just five homogeneous countable permutations: the
increasing permutation, the decreasing permutation, the increasing
sequence of decreasing permutations, the decreasing sequence of
increasing permutations, and the generic permutation.



Other interesting examples?

There are two places we might look for further nice examples.
The class of all k-tuples of finite total orders is a Fraı̈ssé class,
and so there is a generic countable k-tuple of total orders. Are
there any others?

Problem
Determine the homogeneous countable k-tuples of total orders for
k > 2.
Greg Cherlin and his student Sam Braunfeld are working on
this. They have shown that the class is quite rich: any
distributive lattice can occur as the lattice of definable
equivalence relations in some homogeneous structure of this
kind.
The other possible source is almost-homogeneous structures,
which I will describe later.



Ramsey classes

A class of relational structures is a Ramsey class if Ramsey’s
theorem holds in the class.

We use the notation
(

B
A

)
for the class of all substructures of B

isomorphic to A. Now C is a Ramsey class if, given a natural
number r and a pair A, B ∈ C, there exists C ∈ C such that, if the

elements of
(

C
A

)
are coloured arbitrarily with r colours, there

is an element B′ of
(

C
B

)
such that

(
B′

A

)
is monochromatic.

Nešetřil observed:

Theorem
A hereditary isomorphism-closed Ramsey class is a Fraı̈ssé class.
The consequence was that, to find examples of Ramsey classes,
we should look at ages of homogeneous structures.



It is not difficult to see that a non-trivial Ramsey class has the
property that its objects are rigid. The easiest way to ensure this
is to require that one of the relations is a total order.
Now permutation patterns (and, more generally, multiorders)
are obvious candidates. It was shown by Böttcher and Foniok
(for permutation patterns) and Sokić (for arbitrary multiorders)
that

Theorem
The class of all finite multiorders is a Ramsey class.



Topological dynamics

An unexpected addition to this theory came from Kechris,
Pestov and Todorcevic.
The symmetric group on an infinite set is a topological group:
the basic open sets are the cosets of stabilisers of finite tuples.
For the symmetric group of countable degree (say, acting on N),
the topology is derived from a metric: two permutations are
close together if they agree on long initial subsequences of N.
Now it can be shown that a subgroup of the symmetric group
of countable degree is closed in this topology if and only if it is
the full automorphism group of some relational structure
(which can be taken to be homogeneous).



A flow for a topological group G is a continuous action of G on
a compact space M. A flow is minimal if there is no non-empty
proper closed G-invariant subset of M. A mimimal flow is
universal if it can be mapped onto any minimal flow by a
G-equivariant continuous map.
Now the main definition: a topological group G is extremely
amenable if its universal minimal flow consists of a single
point. In other words, any continuous action of G on a compact
space has a fixed point.
Kechris, Pestov, and Todorcevic came up with a rather
unexpected and rich collection of extremely amenable groups:

Theorem
Let X be a countable set, and G a closed subgroup of the symmetric
group on X. Then G is extremely amenable if and only if it is the
automorphism group of a homogeneous structure whose age is a
Ramsey class of ordered structures.
In particular, the automorphism group of the generic
permutation pattern (or, more generally, the generic k-order for
any k) is extremely amenable.



Almost homogeneous structures

Given any countable structure, it is always possible to add
relations to the language to make the structure homogeneous.
In interesting cases, these relations are definable (without
parameters) in the original structure, and only finitely many of
them are needed. We call a structure with this property almost
homogeneous.
Here is an example. There is a “generic” bipartite graph, which
is not homogeneous (as a graph) since non-adjacent vertices
may be at distance 2 or 3. However, if we add the equivalence
relation whose equivalence classes form the bipartition, the
structure becomes homogeneous; this relation is definable (by
the rule that two vertices are equivalent if they are equal or at
distance 2 in the graph).



An example
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I will call a permutation N-free if it contains neither 2413 nor
3142. The class of N-free permutations is the age of an almost
homogeneous structure, as follows.



Let T be a finite binary tree with root r. Let c be a colouring of
the internal vertices with two colours, black and white. Let X
be the set of leaves of T (excluding r).
From the data (T, r, c) we construct a permutation as follows.
Let <1 be the relation on the leaves defined in the usual way by
depth-first search in T, and <2 the order defined by modified
depth-first search in which the children of a white vertex are
visited in reverse order.
Now define a ternary relation by x|yz if x∧ y = x∧ z 6= y∧ z,
where x∧ y is the point where the three paths xy, xr and yr
meet.
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The structure of the data (T, r, c) is reflected faithfully on the set
X of leaves with its two orders and one ternary relation.
There is a countable permutation whose age consists of all
these finite permutations, which is “homogenised” by this
ternary relation.



Reducts

A reduct of a first-order structure S is a relational structure
(possibly in a different first-order language) whose relations
have first-order definitions in S without parameters.
For example, among the reducts of (Q,<) are:

I the betweenness relation β, with β(x, y, z) if x < y < z or
z < y < x;

I the circular order γ, with γ(x, y, z) if x < y < z or y < z < x
or z < x < y (think of bending the line into a circle);

I the separation relation σ, so that σ(w, x, y, z) holds if the
pair {x, z} separates y and w.

Note that the automorphism group of a reduct contains the
automorphism group of S. In the countable homogeneous case,
this property characterises reducts. We identify reducts with
the same group.



Reducts of (Q,<)

The first countable homogeneous structure whose reducts were
classified was Q,<). The theorem was not phrased in these
terms. Since an overgroup of Aut(Q,<) is highly set-transitive
(that is, transitive on the set of k-subsets for all finite k), the
result was phrased as a classification of the highly set-transitive
groups.

Theorem
There are five reducts of (Q,<): these are (Q,<), (Q, β), (Q, γ),
(Q, σ), and the set Q with no structure.



Reducts of the generic permutation

As far as I know, the problem of finding the reducts of the
generic countable permutation has not been solved. Among
them are some of interest in other fields:

I the generic permutation graph, whose edges are the pairs
of points on which the two orders disagree (we saw this in
David Bevan’s talk on Wednesday);

I the generic 2-dimensional poset, the intersection of the two
orders.

I know of 37 reducts. Of these, 25 are found by taking reducts
of the two orders independently; the other 12 allow the orders
to be interchanged, and include the two examples mentioned
above.

Problem
Are there any more? And what about the generic k-tuple of orders?
Any reduct might potentially be useful, or might pose
interesting questions.



A construction of the generic permutation

The generic permutation is a beautiful but somewhat elusive
object. Here is an explicit construction.
We take the elements of the set Ω to be the integer lattice Z3.
If α = (a, b, c) is a vector whose components are linearly
independent over Q, we can associate an order < on Ω by the
rule that v1 < v2 if and only if v1.α < v2.α. The condition on α
guarantees that this is a total order.
If we take two such vectors α and β which are linearly
independent, then the two orders so defined form the generic
permutation. It is not hard to construct two such vectors.



Cayley objects for groups

We see this construction that the generic permutation admits a
transitive abelian group isomorphic to Z3 (the translation
group of the lattice).
Which structures admit transitive abelian groups, or more
generally, transitive groups in which the stabiliser of a point is
the identity? This class includes the important class of Cayley
graphs.
More generally, we say that S is a Cayley object for a group G if
G acts regularly on S (transitively with trivial point stabiliser)
as a group of automorphisms.
So the question is: For what groups is (Q,<) a Cayley object?



Right-orderable groups

A group G acts regularly on an ordered set if and only if G is
right-orderable: there is an order on G invariant under right
translation. Many groups admit such orders.
If G is right-ordered, the set P of positive elements (greater than
the identity) satisfies G = P∪ {1} ∪ P−1 (disjoint union) and
P2 ⊆ P.
The order is dense (and so isomorphic to (Q,<), if G is
countable) if and only if P2 = P. This happens in most
examples.
There are many examples of right-orderable groups, including
all non-abelian free groups.
What about permutations, or more general multiorders?



Multiorders

Theorem
The generic k-tuple of orders admits the group Zr acting transitively
if and only if r > k.
The proof involves some ideas from Diophantine
approximation such as Kronecker’s theorem.
But these are the only finitely generated groups known to act
regularly on generic multiorders!

Problem
Are there any others? For example, can free groups act in this way?



And finally . . .

There are other structures where the same game can be played.
For example, if you are interested in the subword order on
words over a finite alphabet A, then proceed as follows:

I A word is a finite set carrying a total order and also a
partition into parts labelled by A;

I A subword is an induced substructure on a subset.
The class of all finite words is a Fraı̈ssé class, so there is a
universal homogeneous countable word, whose order is
isomorphic to Q.
So, what can we do with this approach? Over to you! And
thank you for your attention.


