
Numerical and graphical invariants of
permutation groups

Peter J. Cameron
University of St Andrews

Asymptotic Group Theory
Budapest, August 2015



Happy birthday!

We are here to celebrate an important equation:

Age(P3) = |A5|



It is a great pleasure to celebrate the birthday of my friend Péter
Pál Pálfy in Budapest, in a meeting on asymptotic group theory.

I On my first visit to Budapest, I lectured about infinite
permutation groups.

I In a restaurant just round the corner, Laci Babai and I
planned a conference on “Group Theory: Finite to
Infinite”.

I My paper with Laci and P3 was about finite groups, but
has been of some importance in the study of locally finite
groups.

However, today I will stick to finite groups.
The most recent material is joint work with Colva
Roney-Dougal; I am grateful to her for comments on the whole
thing [but remaining mistakes are mine!].



Overview

I will begin with a brief survey of three graphs associated with
finite groups: the commuting graph, the power graph, and the
generating graph.
The third of these has the drawback that it is non-trivial only
for 2-generated groups (though of course this class includes the
finite simple groups). One of the big open questions suggests a
more general approach.
I will introduce a chain of equivalence relations on a finite
group. The point at which this chain stabilises is related to
various other group parameters such as the maximal generator
number of a maximal subgroup and the maximum size of a
minimal generating set of G.
I will then discuss several further parameters related to these,
defined in terms of the subgroup lattice or permutation bases.



The commuting graph

The vertices of the commuting graph of a group G are the
elements of G, two vertices joined if they commute.
Since any two vertices are joined by a path of length 2 through
a central element, it is customary to remove the centre of G.
The commuting graph was defined by Gruenberg and Kegel in
an unpublished manuscript in 1975, along with the related
prime graph (whose vertices are the prime divisors of |G|, two
primes p and q joined if G contains an element of order pq.) It is
relevant to the study of the module structure of the
augmentation ideal of kG.
Morgan and Parker showed that, if the centre of G is trivial,
then any connected component of the commuting graph of G
has diameter at most 10.
However, Giudici and Parker found examples of groups (of
2-power order) whose commuting graph has arbitrarily large
diameter.



The power graph

The power graph P(G) of a group G has as vertices the
elements of G, with an edge from x to y if one is a power of the
other. There is a natural directed version~P(G), where we put a
directed arc from x to y if x is a power of y.
Neither graph determines G. For example, if G has exponent 3,
then P(G) is the friendship graph consisting of a number of
triangles with a common vertex.
However, one surprising fact is that, if G and H are groups such
that P(G) and P(H) are isomorphic, then~P(G) and~P(H) are
isomorphic (though not every isomorphism between
undirected power graphs is an isomorphism between directed
power graphs).
If y is a power of x, then x and y commute; so (apart from the
question of whether the centre is included) the power graph is
a spanning subgraph of the commuting graph.



Generation

I now turn to graphs and parameters related to generating sets
for G.
Bear in mind the following example. Let G be a finite p-group.
By the Burnside basis theorem, a set of elements generates G if
and only if the images generate G/Φ(G) (where Φ(G) is the
Frattini subgroup of G).
Now G/Φ(G) is elementary abelian, and so a vector space over
a prime field. So generating sets correspond to bases in the
vector space: any two have the same cardinality, and any
independent set is contained in a generating set.
Of course, things are not so simple in arbitrary groups!



The generating graph

The generating graph Γ(G) of G is the graph whose vertices are
the elements of G, with two vertices x and y adjacent if
〈x, y〉 = G.
Note that this graph is a null graph if G is not 2-generated.
Also, the Frattini subgroup Φ(G) consists of the elements of G
which can be dropped from any generating set. So, if G is not
cyclic, then the vertices in the Frattini subgroup are isolated,
and we may delete them.
If G is 2-generated and not abelian, then pairs of elements
which generate G do not commute, so the generating graph is a
spanning subgraph of the complement of the commuting
graph.



The spread conjecture

Breuer, Guralnick and Kantor showed that, in a finite simple
group, every non-identity element belongs to a 2-element
generating set; in other words, after removing the identity, the
generating graph has no isolated vertices. They conjectured
that a group has this property if and only if all its nontrivial
quotients are cyclic.
This was proved for Sn (for n > 4) by Sophie Piccard in 1939.
More generally, the spread of a graph is the largest number s
such that any s vertices have a common neighbour. The spread
of a group is the spread of its generating graph. Thus G has
spread 6= 0 if and only if 1 is the only isolated vertex in Γ(G).
There has been a lot of research by Burness, Crestani, Guest
and others on the following conjecture:

Conjecture

There is no finite almost simple group which has spread precisely 1;
that is, such a group with non-zero spread has spread at least 2.



Reduction, 1

My work with Colva Roney-Dougal reported here began with
the observation that the generating graph of a finite simple
group has huge automorphism group. For example, the
generating graph of A5 has automorphism group of order
231.37.5 = 23482733690880.
There is a simple reason for this. If two elements of order 3 or 5
generate the same cyclic subgroup, then they have the same
neighbours in Γ(G), and can be permuted arbitrarily. So, if we
define a relation ≡g on G by the rule that x ≡g y if x and y have
the same neighbours, then Γ(A5) has 6 equivalence classes of
size 4, 10 of size 2, and 16 singletons. The normal subgroup
fixing all equivalence classes has order (4!)6.(2!)10, and the
quotient is isomorphic to S5.



Reduction, 2

There is a natural way to define an induced subgraph on the set
of equivalence classes of ≡g: two classes are joined if some
(equivalently, any) pair of vertices one in each class are joined.
The letter g stands for “graph” or “generating”.
This quotient operation preserves many graph-theoretic
properties, for example,

I clique number;
I chromatic number;
I total domination number;
I spread.

Also, the automorphism of the quotient graph Γ(G)/ ≡g is
much more closely related to the group G. For example, for
G = A5, this group is Aut(A5) = S5.



Automorphism groups

Let Γ(G) denote the reduced graph Γ(G)/ ≡g. We regard this
as a vertex-weighted graph, where the weight of a vertex is the
size of the corresponding equivalence class. Let Autw(Γ(G))
denote the group of automorphisms of this graph preserving
the weights.
The automorphism group of G acts on Γ(G); let Aut∗(G) be the
induced group on this graph.

Theorem

Aut∗(G) ≤ Autw(Γ(G)) ≤ Aut(Γ(G)).

The right-hand inequality can be strict. If G = PSL(2, 16) then
there is an automorphism of Γ(G) which interchanges classes
corresponding to elements of orders 3 and 5: the full
automorphism group is C2 × PSL(2, 16). However, these
vertices have different weights.



Reduction, 3

Here is another equivalence relation defined on a group G
which does not depend on G being 2-generated. We write
x ≡m y if, for any finite set Z of elements of G,

〈x, Z〉 = G⇔ 〈y, Z〉 = G.

It is not hard to show that x ≡m y if x and y lie in the same
maximal subgroups of G. (So m in the notation could stand for
“maximal subgroups”.)
Clearly x ≡m y implies x ≡g y, since x ≡g y means that the
condition holds for all singleton sets Z.



Groups of non-zero spread

Lucchini and Maróti have shown that groups of non-zero
spread fall into one of the following types:

I cyclic groups;
I Cp × Cp, for p prime;
I G is the semi-direct product of an elementary abelian

group with an irreducible subgroup of its Singer cycle;
I G has a normal subgroup Tr, where T is non-abelian

simple; the quotient has order rm, where m divides
|Out(T)|, and permutes the factors cyclically.

Theorem
Let G be a soluble group of non-zero spread. Then

I ≡m and ≡g coincide on G;
I all cases in which Aut∗(G) = Autw(Γ(G)) are known.



A chain of equivalence relations

The equivalence ≡g can be generalised as follows.
Let r be a positive integer. We define an equivalence relation
≡(r)

m on G by the rule that x ≡(r)
m y if

(∀z1, . . . , zr−1 ∈ G)((〈x, z1, . . . , zr−1〉 = G)⇔ (〈y, z1, . . . , zr−1〉 = G)).

Here m stands for “maximal subgroups”, as we will see later.
Note that ≡(2)

m coincides with ≡g defined earlier.
The relations get finer as r increases: so we define ≡m to be the
limiting value for large r, and ψ(G) to be the smallest value of r
for which ≡(r)

m coincides with ≡m.



An example

Example

Let G be the symmetric group S4. Then

I ≡(1)
m is the universal relation with a single class, as G is not

1-generated.
I G is 2-generated, but double transpositions lie in no

2-element generating set, so they are all equivalent to the
identity in ≡2, which has 14 classes.

I For r ≥ 3, the double transpositions are all equivalent; two
other non-identity elements are ≡(r)

m -equivalent if and only
if each is a power of the other; there are 15 classes. So
ψ(S4) = 3.



A conjecture and a problem

Conjecture

There are numbers a and b such that ≡(r)
m is

I constant (with a single class) for r ≤ a;
I strictly decreasing in the refinement order for a ≤ r ≤ b;
I constant for r ≥ b.

If true, then we would have a = d(G) and b = ψ(G).
We further conjecture that, if G is simple (or almost simple and
2-generated) then a = b = 2. This has been checked up to order
around 104.
An enumeration problem: how many ≡m classes in the
symmetric group Sn? The series begins

1, 2, 5, 15, 67, 362, 1479, . . .



An asymptotic result

Theorem
Let G be Sn or An. Then for almost all elements x, y ∈ G (all but a
proportion tending to 0 as n→ ∞), the following are equivalent:

I x ≡m y;
I x ≡g y;
I the cycles of x and y induce the same partition of {1, . . . , n}.

The proof depends on the theorem of Łuczak and Pyber, which
states that for almost all x ∈ Sn, the only transitive subgroups
of Sn containing x are Sn and (possibly) An. The equivalence
holds for all such elements.



Some group parameters

Recall that d(G) denotes the minimum number of elements
which generate G.
Let m(G) be the maximum of d(M) over all maximal subgroups
M of G. This parameter has been studied by Burness, Liebeck
and Shalev, who showed, among other things, that m(G) ≤ 4
for any finite simple group G.
Also, let µ(G) be the maximum size of an independent
generating set for G (a generating set of which no proper subset
is generating). This parameter arose in work of Diaconis and
Saloff-Coste on the rate of convergence of the
product-replacement algorithm, and was studied by Whiston
(who showed that µ(Sn) = n− 1) and others.



Bounds for ψ(G)

The equivalence relation ≡(r)
m on G is the universal relation (any

two elements are related) if r < d(G), since no r-tuples generate
G. This is false for r = d(G); indeed, for this value, there are at
least d(G) + 1 equivalence classes (since, if G = 〈x1, . . . , xr〉,
then the identity, x1, . . . , xr are pairwise inequivalent. Thus
ψ(G) ≥ d(G). The next result gives some upper bounds.

Theorem

d(G) ≤ ψ(G) ≤ min{µ(G), m(G) + 1}.

Theorem
Let G be a group of prime power order. Then

d(G) = ψ(G) = µ(G),

and the ≡m-classes are the cosets of the Frattini subgroup Φ(G).



Proof that ψ(G) ≤ µ(G)

We have to show that, if µ = µ(G), and x ≡(µ)
m y, then x ≡m y.

So suppose that we have x ≡(µ)
m y, and let G = 〈x, z1, . . . , zr−1〉.

Suppose that r ≤ µ. Since the relations ≡(r)
m get finer as r

increases, we have G = 〈y, z1, . . . , zr−1〉.
So suppose that r > µ. In this case, our generating set is larger
than µ, and so some element is redundant.
If x is redundant, then G = 〈z1, . . . , zr−1〉 = 〈y, z1, . . . , zr−1〉, as
required.
Suppose that x is not redundant. Then G is generated by a
subset of the given generators of size µ including x, without
loss of generality {x, z1, . . . , zµ−1}. Since, by assumption,

x ≡(µ)
m y, we have G = 〈y, z1, . . . , zµ−1〉 = 〈y, z1, . . . , zr−1〉.



Combinatorics of generating sets

If you know about matroids, you will recognise that, in a
p-group, the minimal generating sets are the bases of a matroid,
which is just a projective space over GF(p) “blown up” with
loops and parallel elements.
Is there any analogue for arbitrary groups?
One possible setting is provided by the recent work of Rhodes
and Silva on Boolean representations of simplicial complexes.
The Boolean representable complexes are more general than
matroids but not as general as arbitrary simplicial complexes.
Details have not yet been worked out.



A note on group parameters

A (finite) group parameter is simply a real-valued function on
the class of finite groups, which is isomorphism-invariant.
If p denotes any group parameter, then we define the parameter
p′ as follows:

p′(G) = max
H≤G

p(H).

So, for example, if d(G) is the minimum number of generators
of G, then d′(G) is the smallest number for which every
subgroup of G can be generated by d′ elements.
Note that p′ is monotonic (H ≤ G implies p′(H) ≤ p′(G)). In
particular, if p is monotonic, then p = p′.



Some further parameters

In the remainder of the talk I will consider the parameters d(G)
(minimum number of generators) and µ (maximum size of an
independent generating set), together with their “derived”
parameters d′ and µ′, and also the parameter l(G), the length of
the longest chain of subgroups of G. (The last parameter is
monotonic, so l′(G) = l(G).)
All these parameters are known for symmetric groups:

Theorem

I l(Sn) =

⌈
3n
2

⌉
− b(n)− 1, where b(n) is the number of ones in

the base 2 representation of n.
I µ(Sn) = µ′(Sn) = n− 1.

I d(Sn) = 2, d′(Sn) =
⌊n

2

⌋
for n > 3.

The non-trivial parts are due to Cameron, Solomon and Turull;
Whiston; and McIver and Neumann.



Base measures

A base for a permutation group G on a set Ω is a sequence of
points of Ω whose pointwise stabiliser in G is trivial. It is
irredundant if no point is fixed by the stabiliser of its
predecessors; and minimal if no point is fixed by the stabiliser
of all the other points.
Now let b1(G), b2(G), b3(G) be the maximum, over all
permutation actions of G (not necessarily transitive or faithful!),
of

I the maximum size of an irredundant base (for b1(G));
I the maximum size of a minimal base (for b2(G));
I the minimum base size (for b3(G)).



Some results

Theorem

I b3(G) ≤ b2(G) ≤ b1(G).
I b1(G) = l(G).
I If G is a non-abelian simple group, then to calculate b3(G) it is

only necessary to consider primitive actions of G.

An example of a group in which the inequalities in the first part
are all strict is G = PSL(2, 7); we have b1(G) = 5, b2(G) = 4,
b3(G) = 3.



Boolean semilattices

An join-semilattice of a lattice Λ is a subset of Λ which is closed
under join and contains the bottom element (the join of the
empty set), while a meet-semilattice is a subset closed under
meet and containing the top element (the meet of the empty
set).
Let B(n) denote the Boolean lattice of all subgroups of an n-set.
For any group G, let Λ(G) denote the lattice of subsets of G.

Theorem
The following are equivalent for the group G:

I B(n) is embeddable as a join-semilattice in Λ(G);
I B(n) is embeddable as a meet-semilattice in Λ(G).

The quaternion group Q8 shows that these conditions are not
equivalent to embeddability of B(n) as a lattice in Λ(G).



A connection

Theorem

I The largest n such that B(n) is embeddable as a join-semilattice
of Λ(G) is µ′(G).

I The largest n such that B(n) is embeddable as a meet-semilattice
of Λ(G) with the minimal element a normal subgroup of G is
b2(G).

As a corollary, we see that b2(G) ≤ µ′(G) for any group G.

Conjecture

The condition on the minimal element can be deleted in the above
theorem.
If so, then we would have b2(G) = µ′(G).
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