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Sampling

In how many ways can we sample n objects from a set of q?

Order Order
significant not significant

With replacement qn
(

q + n− 1
n

)
Without replacement (q)n

(
q
n

)
Here qn is the number of colourings of a set of size n with q
colours.
In the second row we put on a structural restriction: we want
proper colourings of the complete graph. So this is the
chromatic polynomial of Kn.
In the second column, we count up to symmetry, specifically
the symmetric group Sn, the automorphism group of the
complete graph.



Orbit counting

My aim is to generalise this simple observation. The chromatic
polynomial of a graph counts colourings with a structural
restriction; it is a specialisation of the Tutte polynomial. If we
have a group G of automorphisms, we want to count G orbits
on such objects.
The basic tool is the orbit-counting lemma:

Theorem
Let the finite group G act on the finite set X. Then the number of
orbits of G on X is equal to the average number of fixed points of its
elements:

Orb(G, X) =
1
|G| ∑

g∈G
fix(g, X).



The Tutte polynomial

As you know, the Tutte polynomial counts many things; for
example,

I bases, independent sets and spanning sets in a matroid (in
particular, spanning trees, forests, and connected
subgraphs in a connected graph);

I colourings, nowhere-zero flows, and acyclic orientations in
a graph;

I for matroids representable over a finite field, words of each
weight in the code spanned by the rows of a representing
matrix.

We would like to find polynomials for which suitable
coefficients or evaluations give us the number of orbits of a
group of automorphisms of the graph or matroid on the objects
mentioned above (and others if possible).



Orbital chromatic polynomial

Theorem
Let G be a group of automorphisms of the graph X. Then there is a
polynomial OPX,G whose value at a positive integer q is equal to the
number of orbits of G on proper q-colourings of X.
Specifically,

OPX,G(q) =
1
|G| ∑

g∈G
PX/g(q),

where PX denotes the chromatic polynomial of X, and X/g
denotes the graph obtained from X by shrinking each cycle of
the permutation g to a single vertex (with a loop at that vertex if
the cycle contains an edge of the graph – in this case PX/g = 0).



Acyclic orientations

Theorem (Stanley)

The number of acyclic orientations of the graph X is
(−1)|VX|PX(−1).
It is natural, then, to wonder whether the number of G-orbits
on acyclic orientations of X would be (−1)|VX|OPX,G(−1).
This is not quite true. We have to modify the polynomial by
multiplying the term corresponding to the element g ∈ G by
the sign of g (as permutation on the vertices).
If the resulting polynomial is OP∗X,G, then the number of orbits
on acyclic orientations is (−1)|VX|OP∗X,G(−1).



Flows and tensions

It is often said that flows are dual to colourings. Actually they
are dual to tensions, and the orbital perspective makes this
clear.
Let A be a finite abelian group. Take a fixed but arbitrary
orientation of the edges of the graph X. An A-flow on X is a
function from oriented edges to A such that the algebraic sum
of the flows into any vertex is 0 (where flows out have a −
sign).
An A-tension is a function from the oriented edges to A such
that the algebraic sum of the flows around any directed cycle is
0 (where flows on edges directed against the cycle have a −
sign.)
A flow or tension is nowhere-zero if it does not take the value 0.
It is easy to see that the number of nowhere-zero tensions is
PX(q)/qκ, where q = |A|, and PX and κ are the chromatic
polynomial and the number of connected components of X.



Tutte showed that the number of nowhere-zero flows also
depends only on q = |A| and not on the structure of A.
However, if G is a group of automorphisms of X, then the
number of G-orbits on nowhere-zero flows and tensions does
depend on the structure of X:

Theorem
There are polynomials OTX,G and OFX,G in indeterminates
x0, x1, x2, . . . such that the number of G-orbits on nowhere-zero
A-tensions (resp. A-flows) are obtained from OTX,G (resp. OFX,G by
substituting for xi the number of solutions of ia = 0 in A.
Note that x0 = |A| and x1 = 1. Moreover, xi occurs in one of
these polynomials only if G contains an element of order i. So
we recover Tutte’s observation when G is the trivial group.



Matrices over PIDs

The proof of the theorem involves finding a generalised Tutte
polynomial associated with a matrix M over a principal ideal
domain. The polynomial has two sequences of variables
x0, x1, x2, . . . and y0, y1, y2, . . .; the x variables give the orbital
tension polynomial and the y variables the orbital flow
polynomial.
Now tensions are elements of the kernel of the vertex-edge
incidence matrix of the graph, and flows are elements of the
kernel of the cycle-edge incidence matrix. Both matrices are
unimodular. To count fixed points of a permutation g with
permutation matrix Pg, we append I− Pg to the appropriate
incidence matrix; this is no longer unimodular, so we need
variables for all the possible invariant factors of the matrix
(indexed by the associate classes in the ring Z).
All this can be done for matrices over any principal ideal
domain.



Finite fields and codes

If we use the finite field GF(q) instead of the integers as our
principal ideal domain, then the kernel of a matrix is a linear
code over GF(q).
So the general machinery gives us an orbital weight enumerator
associated with a linear code and a group of automorphisms.
In the case of the trivial group, we get the weight enumerator
of the code as a specialisation of our (four-variable) Tutte
polynomial. Curiously, the connection we get is slightly
different from the one in Curtis Greene’s famous theorem!



More generally . . .

Even if you are not at all interested in automorphisms and
orbit-counting, the above technique might be useful.
Let C be a linear code over Z4, the integers modulo 4. (These
codes have been of some interest since the paper of Hammons
et al. showed that certain famous non-linear binary codes such
as the Nordstrom–Robinson, Preparata and Kerdock codes are
images, under the non-linear Gray map, of linear Z4 codes.)
The symmetrised weight enumerator of such a code has three
indeterminates X0, X2, and X13: each codeword w contributes a
term Xa

0Xb
2Xc

13, where a, b and c are respectively the numbers of
entries equal to 0, 2, and (1 or 3) respectively – in other words,
the associate classes!
Carrie Rutherford gave an analogue of the deletion–contraction
formula for such codes, which involves a third operation which
she called “detraction”.
So our approach gives a generalisation to codes over Zq, or
more general finite rings.



Cycle index
Let G be a permutation group on a set X. The cycle index of G
is the polynomial in indeterminates s1, s2, . . . given by

Z(G) =
1
|G| ∑

g∈G
sc1(g)

1 sc2(g)
2 · · · ,

where ci(g) is the number of i-cycles in the cycle decomposition
of G.
This gadget automates many orbit counting problems. If we
have a set of “figures” with non-negative integer “weights”,
with A(x) the generating function of figures by weight, then
any orbit of G on “functions” (from X to the set of figures) has
an associated weight, and the generating function for functions
by weight is given by the cycle index, with si substituted by
A(xi) for all i: this is the cycle index theorem.
This is fine for counting unrestricted colourings, but for e.g.
proper colourings of graphs something more is required.
If G is a group of automorphisms of a matroid M on X, can one
combine the cycle index of G with the Tutte polynomial of M?



IBIS groups



A base for a permutation group is a sequence of points whose
stabiliser is the identity. It is irredundant if no point is fixed by
the stabiliser of its predecessors.

Theorem
For a finite permutation group, the following are equivalent:

I all irredundant bases have the same size;
I irredundant bases are preserved by reordering;
I the irredundant bases are the bases of a matroid.

A permutation group having these equivalent properties is
called an IBIS group (for Irredundant Bases of Invariant Size).
There are many examples.
For IBIS groups, the connection between cycle index and Tutte
polynomial should be closer.



Tutte cycle index

My first attempt went like this. Let G be an IBIS group, and M
the associated matroid.
The Tutte cycle index of G is given by

ZT(G) =
1
|G| ∑

A⊆X
u|GA|vb(G(A))Z(GA

A),

where GA and G(A) are the setwise and pointwise stabilisers of
A, GA

A the permutation group induced on A by GA, and b(G) is
the base size of G.
We recover the cycle index by the rule that(

∂
∂u ZT(G)

)
(u = 1, v = 1) is equal to Z(G) with si + 1

substituted for si.
We recover the Tutte polynomial of M by the rule that
|G|ZT(G; u = 1, si = ti) is equal to tb(G)T (M; v/t + 1, t + 1).



More generally?

For an arbitrary permutation group, the irredundant bases are
not the bases of a matroid. Is there a more general
combinatorial structure defined by these bases? Can we
associate an analogue of the Tutte polynomial (or the Tutte
cycle index) with it?
Note that the first specialisation on the preceding slide works
for an arbitrary permutation group; we could simply put v = 1
and omit all mention of matroid rank.


