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Permutation groups and transformation semigroups

This is part of a big project, joint with João Araújo and others,
to use our knowledge of finite permutation groups to get
information about transformation semigroups.
Given a transformation monoid M on a set Ω, the units of M
form a permutation group G, and a generating set for M must
contain a generating set for G (you can’t generate permutations
using non-permutations!)
So, at least to get things started, it is natural to consider the case
M = 〈G, a〉, where G is a permutation group and a a
non-permutation. A typical question is:

Question
Which permutation groups G guarantee that M = 〈G, a〉 has some
specified nice property, for all or some choices of non-permutation a?



Idempotent generation

Here is a special case. The rank of a map is the size of its image;
and an itempotent is a map e satisfying e2 = e.

Question
For which transitive permutation groups G is it true that, for all
maps a of rank 2, the semigroup 〈G, a〉 \G is idempotent-generated?
(The rank 1 case is trivial since any rank 1 map is idempotent.)
We have conjectured a complete answer to this question, and
proved part of it.



Idempotents

Start with an easier question. For which transitive groups G is
it true that, for all maps a of rank k, 〈G, a〉 \G contains a rank k
idempotent (an element e with e2 = e)?
The kernel of a is the partition of {1, . . . , n} into inverse images
of points in the image of a.
An idempotent has the property that its image is a section (or
transversal) to its kernel partition. Conversely, if the image of a
is a section to its kernel, then some power of a is an idempotent.
So, if a has rank k, then there is an idempotent of rank k in 〈G, a〉
if and only if there is an element g ∈ G mapping the image of a
to a section for the kernel.
So a necessary and sufficient condition is that G has the
k-universal transversal property: given any k-set S and
k-partition P, there is an element of G mapping S to a section
for P.



2-ut and primitivity

For k > 2, the k-ut property is very restrictive. But for k = 2, it
is equivalent to something very familiar to permutation group
theorists!
A group G has the 2-ut property if and only if every orbit of G
on 2-sets contains a section of every 2-partition. This is
equivalent to saying that every orbital graph for G (graph with
edge set SG, the G-orbit of S) is connected.
An old theorem of Donald Higman says that this is equivalent
to primitivity of the group G, the property that G preserves no
non-trivial partitions of {1, . . . , n}.



The Houghton graph

Idempotent generation requires a stronger condition.
Given a group G, and a k-subset S and k-partition P of its
domain, the Houghton graph H(G, k, P, S) is the bipartite graph
with vertex set PG∪ SG, with an edge from S′ to P′ whenever S′

is a section of P′.
Let P and S be the kernel and image of a. If there is a product of
idempotents in 〈a, G〉 \G having kernel P′ and image S′, then
the image of each idempotent is a section for the kernel of the
next, so there is a path from P′ to S′ in H(G, k, P, S).
So connectedness of the Houghton graph is a necessary
condition for idempotent generation.



Theorem
〈G, a〉 \G is idempotent-generated for every rank 2 map a if and only
if every 2-Houghton graph for G is connected.
We will say that G has the 2-Hc property if this condition holds.
As this theorem suggests, 2-Hc is a strengthening of primitivity.



A reformulation

The condition in the theorem is still time-consuming to check,
since there are exponentially many 2-partitions of {1, . . . , n}.
By focussing on the 2-sets instead, we can find a much more
efficient test:

Theorem
A primitive permutation group G on {1, . . . , n} has the 2-Hc
property if and only if, for every G-orbit O on 2-subsets of {1, . . . , n},
and every maximal block of imprimitivity B for the action of G on O,
the graph with edge set O \ B is connected.
Of course, there are only polynomially many orbital graphs to
check. For each one, there are hopefully not too many maximal
blocks of imprimitivity. And testing connectedness is fast!
So you could just go to the computer, start up GAP, and begin
testing examples . . .



How many blocks?

Is there a polynomial upper bound for the number of maximal
blocks of imprimitivity in a transitive group?
A special case is Wall’s conjecture, asserting that the number of
maximal subgroups of a finite group is not greater than the
order of the group. (This is the case where the transitive group
is regular.) Wall’s conjecture was disproved by participants at
an AIM workshop, written up by Guralnick, Hodge, Parshall
and Scott; but they expect there to be an upper bound n1+ε,
where maybe ε = 10−5. But this still leaves some questions:

I What about the general case?
I Even if the number is not too large, can we find them all in

polynomial time?
Of course we have more information: our group is a primitive
group acting on the edges of some orbital graph . . .



An example

Consider the automorphism group of a m×m grid: two points
are joined if they lie in the same row or column. The
automorphism group is the wreath product Sm o S2 in its
product action on m2 points.
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The edges fall into two blocks of imprimitivity under the
automorphism group: horizontal and vertical.
If workmen come and dig up all the vertical roads, then it is
impossible to get from one row to another. So this primitive
group fails to have the 2-Hc property.



First generalisation: non-basic groups

Here is part of my take on the O’Nan–Scott theorem.
A primitive permutation group is non-basic if it preserves a
Cartesian power structure on the set of points, i.e. if it is
embeddable in the wreath product Sm o Sk with the product
action.
A primitive group is basic otherwise.
Just as in the previous example, it is easy to show that a
non-basic primitive group fails to have the 2-Hc property.
The O’Nan–Scott theorem gives us good information about the
basic primitive groups: they must be affine, diagonal, or almost
simple.



Second generalisation

Another way of looking at the example leads to the following.

Proposition

Let G be a primitive permutation group. Suppose that G has an
imprimitive subgroup of index 2. Then G does not have the 2-Hc
property.
Groups of this type are groups of automorphisms and
anti-automorphisms of self-dual incidence structures, acting on
the set of flags (incident point-block pairs) of the structure. We
join two flags if they share a point or a block. The
automorphisms form a subgroup of index 2, and the edges fall
into two blocks depending on whether the shared element is a
point or a block. If we remove edges of one type, we cannot
move between flags with different elements of the other type.



So there are two kinds of adjacency:

r is joined to u   
   r

andr is joined to ur
If all connections of the second type are removed, then we
cannot move from a flag to another flag with a different point!



Examples for the last result include groups of projective spaces
(on point-hyperplane flags or on point-hyerplane antiflags, or
on i-space/(n− 1− i)-space flags), symplectic generalised
quadrangles in characteristic 2, G2 generalised hexagons in
characteristic 3, and some sporadic examples such as
PGL(2, 11) with degree 55 or 66, and HS : 2 with degree 22176
coming from symmetric 2-designs with 2-transitive groups.
The examples of degree up to 120 are

I L3(2) : 2, degrees 21 and 28 (flags and antiflags in Fano
plane);

I S6 : 2 and subgroups, degree 45;
I L3(3) : 2, degrees 52 and 117;
I L2(11) : 2, degrees 55 and 66;
I Aut(L3(4)) and subgroups, degree 105;
I S8 = L4(2) : 2, degrees 105 and 120;
I S7, degree 120.



More examples

Not all examples have such a nice geometric structure.
Let p be a prime congruent to ±1 (mod 5) and to ±3 (mod 8).
Then PGL(2, p) contains a conjugacy class of subgroups
isomorphic to A5, which splits into two classes in PSL(2, p). An
A4 subgroup of one of these A5’s is normalised by S4 in
PGL(2, p); elements of S4 not in A4 conjugate the A5 to one in
the other PSL(2, p) class.
Thus PGL(2, p), on the cosets of S4, is a primitive group of
degree p(p2 − 1)/24, which has an imprimitive subgroup of
index 2; the corresponding incidence structure has five points
in a block.
There are also a couple of sporadic actions of M12 : 2.
I do not see the prospect of determining all these groups . . .



From duality to triality
There are further examples in which duality is replaced by the
remarkable phenomenon of triality, associated with split
quadratic forms in 8 variables.
The geometry of a split quadric in 8 vector space dimensions
consists of the totally singular points, lines and solids
(projective 3-spaces) on the quadric. The solids fall into two
families: two solids belong to the same family if and only if
their intersection has even codimension.
The principle of triality asserts that if the labels “point”, “solid
of class 1” and “solid of class 2” are permuted arbitrarily, the
lines being preserved, then the truth of all geometric properties
remains unaltered.
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Thus, PΩ(8, q) : S3 acts on flags consisting of a point and a pair
of maximal singular subspaces of opposite types in the
associated quadric, and these examples also fail the 2-Hc
property.
The smallest example arising in this way, with q = 2, has
degree 14175.

Triality was discovered by Eduard Study and developed by
Élie Cartan. It is connected with other remarkable things such
as the octonions, spinors, and the Leech lattice.



A conjecture

Conjecture

Let G be a basic primitive permutation group. Suppose that G does
not have an imprimitive normal subgroup of index 2, and is not one of
the triality examples just mentioned. Then G has the 2-Hc property.
Hence, for any rank 2 map a, the semigroup 〈G, a〉 \G is
idempotent-generated.
This conjecture has been checked computationally for all
degrees up to 130 and many larger degrees. No
counterexamples have been found.



Some cases

We can settle various cases of the conjecture: it is true if
I n is prime;
I n is the square of a prime;
I G is 2-homogeneous;
I G is Sm or Am acting on k-sets.

As noted, a group with 2-Hc must be basic, and hence is affine,
diagonal or almost simple. It would be nice to resolve at least
the first two cases.
For example, a theorem of Wielandt asserts that a group of
degree p2 (for p prime) is affine, or contained in Sp o S2, or is
2-transitive. In the second case, 2-Hc fails, while in the third, it
holds. So it is the affine case which has to be considered.



Synchronization
I will be brief. If you want to know more, there is a long
preprint on the arXiv: 1511.03184
You are in a dungeon consisting of interconnecting caves. Each
cave has two one-way exists, coloured red and blue; there is a
third exit, which in one cave leads to freedom, and in the others
to death. You have a map but don’t know where you are.
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You can check that the sequence BRRRBRRRB will bring you to
room 2 from any starting point.



Automata

A (finite-state, deterministic) automaton is a black box with a
finite number of internal states. If a symbol from an alphabet is
input, it undergoes a state transition. (Imagine that there are
red and blue buttons on the box.)
Our automata are very simple: they don’t have “accept states”,
and so they don’t recognise languages; you can start in any
state.
An automaton can be represented combinatorially by a directed
graph (whose vertices are the states) with edges labelled by
symbols of the alphabet, so that there is exactly one edge with
each label leaving each vertex, as in the preceding example.
Algebraically, a transition is a transformation on the set of
states; since we may compose transitions, an automaton is a
transformation monoid on the set of states, with a prescribed
set of generators.



Synchronization

An automaton is said to be synchronizing if there is a sequence
of inputs which brings it to a known state, regardless of its
starting point. Such a sequence is called a reset word.
The example on the preceding slide had a reset word of
length 9 (but none of shorter length).

Problem (The Černý conjecture)

If an n-state automaton is synchronizing, then it has a reset word of
length at most (n− 1)2.
Our example and the obvious generalisation shows that, if true,
this bound is best possible. But the conjecture is still open after
half a century!
We can test whether an automaton is synchronizing in
polynomial time, but finding the shortest reset word is
NP-hard.



Road-colouring

A related conjecture, the road-colouring conjecture, was posed
by Adler and Weiss in 1970, and solved by Trahtman in 2009.
Given a directed graph, is it possible to colour the edges in such
a way that the result is an automaton which can be
synchronized at any vertex?
There are some necessary conditions:

I the digraph is strongly connected;
I the out-degrees of all vertices are the same;
I the greatest common divisor of the cycle lengths is 1.

The road-colouring conjecture (now theorem!) asserts that
these necessary conditions are sufficient.



Synchronizing groups

With a few exceptions, all known examples meeting the Černý
bound have monoids of the form M = 〈G, a〉, where G is a
group of permutations, and a a transformation which is not a
permutation. I will consider only this type in future.
Abusing notation, we call a permutation group G
synchronizing if the monoid generated by G and a is
synchronizing for all non-permutations a (on the set Ω of
states).
Our question now is:

Question
Which permutation groups are synchronizing?
This turns out to include many problems of great interest from
extremal combinatorics and finite geometry.



Synchronizing groups, 2

Proposition

A synchronizing group is primitive and basic.
For example, if G is not basic, choose a system of imprimitivity,
and choose representatives for its blocks: let a map any point to
its representative. Then 〈G, a〉 is not synchronizing.
If G is not synchronizing, then a map of smallest rank not
synchronized by G is uniform (all its kernel classes have the
same size). We say that a group is almost synchronizing if it
synchronizes any non-uniform map.
It was conjectured for a time that every primitive group is
almost synchronizing. But . . .



Primitive but not almost synchronizing

We found two nice counterexamples to the conjecture. These
are the automorphism groups of the Tutte–Coxeter graph on 30
vertices and the Biggs–Smith graph on 102 vertices, acting on
the edges of the graph.
Said another way, the line graphs of these two interesting
graphs have primitive automorphism groups and admit
non-uniform endomorphisms.
In each case, the line graph has the property that a closed
vertex neighbourhood is a butterfly (two triangles with a
common vertex), and the whole graph has an endomorphism
onto the butterfly.
Subsequently, more counterexamples were found, but these
line graphs have rich and interesting endomorphisms and
would surely repay further investigation!




