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Classification of Finite Simple Groups

The Classification of Finite Simple Groups (CFSG for short) is
the greatest single collective achievement of mathematics. It is

I easy to state;
I hard to prove (the first proof ran to about 15000 pages,

with contributions from hundreds of mathematicians);
I easy to apply (group theorists have developed powerful

tools for this); and
I of very wide applicability in mathematics; but
I the proof has a somewhat tangled history.

I aim to tell you about some of this (not the proof!).



The theorem

A group is simple if it has no normal subgroups except itself
and the trivial group. According to the Jordan–Hölder
theorem, every finite group can be built from finite simple
groups (though we do not completely understand the building
process!)

Theorem
A finite simple group is one of the following:

I a cyclic group of prime order;
I an alternating group An, for n ≥ 5;
I a group of Lie type; or
I one of 26 sporadic groups, with orders ranging from 7920 to

808017424794512875886459904961710757005754368000000000.



The groups

The groups are now fairly well understood. There is no
mystery in the cyclic groups of prime order, apart from the
mystery of the primes! The alternating group An consists of all
even permutations of {1, . . . , n} (those where the number of
cycles has the same parity as n). Groups of Lie type are closely
related to certain matrix groups over finite fields; they fall into
a number of families, parametrised by a field order and (for
some families) a dimension. The sporadic groups are best
understood as individuals.
For applications, the most important things we need to know
about simple groups (and groups closely related to them) are

I the maximal subgroups;
I the matrix representations.

Much of this information is available in computer packages
such as Magma and GAP, or on-line at the Atlas of Finite
Group Representations.



First consequences of CFSG

These are things which were conjectured long before the
theorem was proved, but were (and still are) out of reach
without CFSG. (Here and later, I annotate theorems proved
using CFSG.)

Theorem (CFSG)

I A finite simple group can be generated by two elements (and
there is a great deal of freedom in choosing the generators).

I The outer automorphism group of a finite simple group is soluble
(and has a particularly easy structure to understand).

I There is no finite 6-transitive permutation group apart from
symmetric and alternating groups.

Here, a permutation group is k-transitive if any k distinct points
can be mapped to any other k distinct points by some group
element.



How many groups?

Since simple groups are the building blocks for all groups, their
classification should give us information on how many groups
there are. Peter Neumann proved:

Theorem
If there exists a constant c1 such that the number of simple groups of
order n is bounded by nc1 log2 n, then there exists a constant c2 so that
the number of groups of order n is bounded by nc2 log2 n.
It is a consequence of CFSG that there are at most two simple
groups of order n for any n. So an unconditional form of
Neumann’s bound follows from CFSG.
It is known that, for prime powers n, there is a lower bound for
the number of groups, also of the form nc log2 n.



Some history

The cyclic, alternating and classical groups and five of the
sporadic groups (the Mathieu groups) were known by the early
20th century. The remaining groups of Lie type (the exceptional
groups) were discovered by Chevalley, Steinberg, Ree and Tits
in the 1950s. In the 1960s, Feit and Thompson proved the Odd
Order Theorem (no simple group apart from cyclic groups can
have odd order), introducing many new techniques; and
Brauer introduced methods for studying involutions (elements
of order 2).
At this point it looked as if the classification might be feasible.
But then in 1965, Janko discovered a sporadic simple group of
order 175560 . . .



Over the next fifteen years or so, the remaining sporadic simple
groups popped up, seemingly randomly. But Daniel
Gorenstein masterminded an approach to the classification;
work on this ran concurrently with the new discoveries, and
the hope was that the two threads would converge.
In 1980, this seemed to have happened, and Gorenstein
announced the completion of the classification project (apart
from a few details, such as the construction of J4 and the
identification of the “groups of Ree type”), which were solved
soon afterwards.
But there was a much larger problem which was not realised.
One of the important cases in the proof, the “quasithin case”,
was rumoured to have been completed; but the rumour was
wrong. It took 25 years to fill this lacuna (during which time
the precise definition of a quasithin group changed!)
The gap was eventually filled by Michael Aschbacher and
Steve Smith, and the last part of the proof published in 2011.



Work continues on finding a “better” proof.
Is CFSG true? 35 years on from Gorenstein’s announcement,
nobody has found any evidence to the contrary, either by
finding another simple group, or by discovering that using it
leads to a contradiction. So, very likely, yes.
Is the proof correct? Certainly not, but hopefully the mistakes
can be fixed before the expertise is lost. The proof of the Odd
Order Theorem (about 400 pages long) has been formalised by
Georges Gonthier and colleagues in 2012, and checked using
the Coq computer proof assistant. Maybe the same will be done
for CFSG one day.
Should we happily use the theorem? I will comment on this
later . . .



Following Gorenstein’s announcement in 1980, people began
using the theorem, though the more prudent clearly labelled
their results as depending on the (yet unproved) CFSG.
I was one of those people; I spent a term on sabbatical at the
University of Sydney, where I gave a course of lectures on the
consequences of CFSG for permutation group theory (which
became my most-cited paper).
Applications were found in computer science (the graph
isomorphism problem), and number theory (relative Brauer
groups), as well as other parts of group theory (such as
profinite groups) and combinatorics (e.g. distance-transitive
graphs). I will discuss some of these in the remainder of this
lecture.



To use or not to use CFSG?

Right from 1980, many people took the pragmatic view that a
theorem is made to be used. Since the proof was not complete,
we should acknowledge that. But now that the proof is
complete, there is no problem, right?
The counter-argument is that this is a theorem whose proof is
so long that it is not possible, even in principle, for a
mathematician who wishes to use it to check the entire proof.
So the principle “take nothing on trust” is violated.
But CFSG is such an important and useful theorem that we
would sacrifice a lot of mathematics by not using it.
You have to make up your mind about this. Perhaps it is not
too dissimilar from using the Axiom of Choice. (With AC, we
can assume it or its negation; with CFSG, we can’t assume the
negation, just use it or not.)



A paper of J.-P. Serre

Jean-Pierre Serre, On a theorem of Jordan, Bull. Amer. Math. Soc.
40 (2003), 429–440.

Theorem
Let f be a polynomial of degree n over Z, with n ≥ 2, which is
irreducible in Q[x]. Then the set of primes p for which f has no roots
mod p has a density, which is at least 1/n.

Theorem
Let f : T → S be a finite covering of a topological space S. Assume
that every fibre has cardinality n, where n ≥ 2, and that T is arcwise
connected and non-empty. Then there is a continuous map
φ : S1 → S which cannot be lifted to T.



A theorem of Jordan

C. Jordan, Recherches sur les substitutions, J. Liouville 17 (1872),
351–367.

Theorem
Let G be a finite group acting transitively on a set Ω, with
|Ω| = n > 1. Then G contains a fixed-point-free element.
For a simple counting argument (which some people call
Burnside’s Lemma) shows that the average number of fixed
points of elements of G is 1. But the identity fixes more than
one point; so some element fixes less than 1.
The two theorems I quoted from Serre’s paper follow from this,
with a tailpiece: P. J. Cameron and A. M. Cohen, On the
number of fixed point free elements in a permutation group,
Discrete Math. 106/107 (1992), 135–138.

Theorem
With the same hypotheses, at least |G|/n elements of G are
fixed-point-free.



A theorem of Fein, Kantor and Schacher

B. Fein, W. M. Kantor and M. Schacher, Relative Brauer groups,
II, Crelle 328 (1981), 39–57.

Theorem (CFSG)

Let G be a finite group acting transitively on a set Ω, with
|Ω| = n > 1. Then G contains a fixed-point-free element of
prime-power order.
They used this to prove the following result:

Theorem (CFSG)

Let K be a global field (a finite extension of Q or of F(x) for a finite
field F), L a finite extension of K. Then the relative Brauer group of L
over K is infinite.
In other words, there are infinitely many “inequivalent”
finite-dimensional central simple algebras over K which
become matrix algebras when tensored with L.



Sketch proof

Let G act transitively on Ω, with |Ω| = n > 1.
Standard reductions from permutation group theory allow us
to assume that

I G acts primitively, that is, a point stabiliser is a maximal
subgroup;

I G is simple.
So we need to know that, if G is simple and H a maximal
subgroup, there is a conjugacy class of elements of prime power
order disjoint from H. This is done case-by-case using detailed
knowledge of the finite simple groups.



Two features

I The two theorems in the FKS paper are equivalent. Thus, a
direct proof that relative Brauer groups are infinite would
allow the result about f.p.f. elements of prime power order
to be proved without CFSG. (Nobody has done this yet.)

I The proof is algorithmic: it gives a polynomial-time
algorithm for finding a f.p.f. element of prime power
order. But the algorithm is of course quite complicated,
and we need CFSG to prove its correctness.

That led me to wonder whether one could make Jordan’s
theorem algorithmic. The second remark above shows that
there is a polynomial-time algorithm to find a f.p.f. element.
But can we do it more simply?
There is a simple randomized algorithm. Since at least |G|/n
elements are f.p.f., if we choose elements at random, then after
n choices the probability of failure is about 1/e, and after n2

choices it is exponentially small.



The question was answered by Vikraman Arvind, who
“derandomized” the simple algorithm above. Here is a brief
outline of his method (see arXiv 1301.0379).
Jordan tells us that the average number of fixed points in a
transitive permutation group G on Ω is 1. A simple extension
(with the same proof) shows that the average number of fixed
points in any coset of G in the symmetric group on Ω is also 1.
The same is not true for groups G which are not transitive; but
there is a simple way to compute the average in any coset.
So start with the transitive group G; successively compute the
stabilisers of points, and in each stabiliser find a coset where
the average number of fixed points is no greater than in the
step before (and is strictly smaller at the first step.)
At the end, the stabiliser is the identity, so a coset is a single
element, which has fewer than one fixed point, that is, is f.p.f.,
as required.



Which prime? Isbell’s conjecture

J. R. Isbell, Homogeneous games, II, Proc. Amer. Math. Soc. 11
(1960), 159–161.
In 1960, John Isbell was studying game theory (in the sense of
von Neumann and Morgenstern). The theory of n-player
games is quite complicated, and Isbell wanted a condition
which would ensure that the game was fair, that is, no player
should have an advantage.
He did so by requiring that the automorphism group of the
game acts transitively on the set of players. He called such a
game homogeneous.
He showed that a homogeneous simple game on n players
exists if and only if there is a transitive subgroup G of the
symmetric group Sn containing no fixed-point-free element of
2-power order.
For which n does such a group exist?



Isbell made the following conjecture:

Conjecture

Let n be a positive integer for which the 2-part of n is “sufficiently
large” compared to the odd part (that is, there is a function f such that
n = 2a · b where a ≥ f (b)). Then any transitive group of degree n
contains a fixed-point-free element of 2-power order; hence there is no
homogeneous game for n players.
Remarkably, this conjecture is still open, even using CFSG!
There is an obvious extension from the prime 2 to arbitrary
primes; slightly more progress has been made for primes at
least 5, but the conjecture has not been solved for any prime.



Chains of subgroups

The length l(G) of a group G is the length of the longest chain
of subgroups in G. It is a nice measure of the complexity of G: it
depends on the composition factors of G (the simple “building
blocks”), but not on how they are put together.
I am proud of the following formula which I found in the early
1980s: see P. J. Cameron, R. Solomon and A. Turull, Chains of
subgroups in symmetric groups, J. Algebra 127 (1989), 340–352.

Theorem (CFSG)

l(Sn) =
⌈

3n
2

⌉
− b(n)− 1,

where b(n) is the number of ones in the base 2 representation of n.



The theorem depends only weakly on CFSG, and will no doubt
be proved without it one day. It is not hard to build a chain of
the stated length; the problem is to show that no chain can be
longer. So take a chain

Sn = G0 > G1 > . . . > Gl = {1}.

If G1 is intransitive, or transitive but imprimitive (i.e. preserves
a partition of {1, . . . , n}), then we can use induction. If G1 is
primitive, it follows from CFSG that its order is quite small,
and the length of the chain is at most 1 + log2 |G1|.
Indeed, there are elementary bounds for the orders of primitive
groups which are nearly good enough . . .



László Babai

L. Babai, On the order of uniprimitive permutation groups,
Annals of Mathematics 113 (1981), 553–568.

Theorem
If G is a primitive subgroup of Sn which is not 2-transitive, then
|G| ≤ n4n1/2 log n.
The best bound previously had been exponential, due to
Wielandt. Babai’s bound is almost best possible, but using
CFSG it is possible to refine it considerably, to get order nlog n

with “known” exceptions.
Babai’s proof used elementary combinatorics but very little
group theory. He later gave a bound for 2-transitive groups
which was subsequently improved by Pyber. (Using CFSG, we
know all the 2-transitive finite permutation groups.)



Graph isomorphism

Very recently, Babai has shown that the isomorphism of
n-vertex graphs can be tested in quasi-polynomial time, that is
time O(exp(logc n)) for some constant c.
This is a substantial and beautiful piece of work, and probably
one of the best results in complexity theory in the last year.
His proof uses CFSG, in the way we have just seen (that is, the
fact that primitive groups are small with known exceptions).
Again, it seems that it might be possible to avoid the use of
CFSG here, and Pyber is working on this . . .


