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I will give a few thoughts of my own, followed by my take on
some of the things we have heard over the course of the
symposium. It is my own take, but I make no apology: if I
misrepresented you, maybe you should have explained it more
clearly!
The interdisciplinary nature of the symposium meant that there
were many times when people in the audience asked for more
detail from speakers. I have not attempted to record this.
Rather than try to draw out general lessons from the very
different talks we heard, I have recorded many details about
dealing with big data in various contexts, so you can draw your
own conclusions.
I hope to make a version of this summary available later.



The combinatorial explosion

How many semigroups (sets with associative binary operation)
of order n, up to isomorphism?

n 2 3 4 5 6 7 8 9
# 5 24 188 1915 28634 1627672 3684030417 105978177936292

These numbers are not just evaluations of a formula: essentially
the objects must be generated and counted.

Also, future generations of semigroup theorists might need to
check the list to test a conjecture or look for a particular
property.

So we have to store this data in accessible form.

There are many areas of discrete mathematics where this issue
arises!



Open Research Data: UK Concordat

Here are some extracts from the document, my emphasis in red.

I Research Data are quantitative information or qualitative
statements collected by researchers in the course of their
work by experimentation, observation, interview or other
methods.

I The Concordat applies to all fields of research.
I Principle #3: Data must be curated so that they are

accessible, discoverable and useable.
I Principle #8: Data supporting publications should be

accessible by the publication date and should be in a
citeable form.

I Data underlying publications should be retained for 10
years from collection, creation or generation of the research
results.



Example: The Atlas of Finite Group Representations

This site contains a large amount of data on a collection of
almost simple groups. It has information on 716 groups in 5215
permutation or matrix representations, some rather large.
For example, E8(5) has order about 2 · 10173 and is generated by
two 248× 248 matrices over the field GF(5).
Sitting at my desk, running my favourite computer algebra
program GAP, I can type

> RequirePackage("atlasrep");

and then
> G:=AtlasGroup("E8(5)");

and generators of the group are downloaded ready for me to
explore. Similarly for the other seven hundred groups in the
database.
In my view this is a paradigm for big data in discrete
mathematics!



Arieh Iserles

The 19th century was the century of steam, the 20th of the
internal combustion engine, or of electricity. Will the 21st be the
century of data science? Arieh claimed that the correct answer
would be information, the organisation of data and its use to
transform our lives.
Data science is not just mathematics: it includes topics such as
machine learning, image analysis, network analysis and signal
processing, but also such non-mathematical aspects as data
fusion and curation, natural language processing, legal and
ethical aspects, and social science.
The areas of mathematics most relevant to data science are
statistics, computation and optimization, applied and
computational harmonic analysis, PDEs, and inverse problems.



As individual mathematicians, we should not flock to data
science, but continue to do what we are excited about. But
heads of department must be aware of funding opportunities
and ensure that experts in data science are appointed.
His model of data science is a bicycle wheel. The experts work
at the hub; the rim is the entire university; and the spokes are
the communication channels.
(I have met this model before. At the Isaac Newton Institute in
Cambridge in 2011, John Stufken used it to describe the
relationship between theoretical statisticians and scientists who
need statistics: essentially the same example, but John thinks of
spokes as people who are comfortable both in the hub and at
the rim, who can apply the latest theoretical developments to
real problems.)
In short, this is a great opportunity for mathematics!



Igor Rivin

Igor began with the notion that discrete mathematicians
generate data out of their heads (in the case of Gauss, the first
data scientist), or, nowadays, their computers, rather than from
experiment or observation; but the principles are the same.
As a case study, he described zeolites, hydrated aluminosilicate
minerals which now have many industrial uses, from catalysts
in the petrochemical industry to cat litter. The number of
naturally occurring zeolites is in the hundreds, but vast
numbers can be generated by computer; so many, that
generating them and searching for those with interesting
properties is infeasible. Can we correlate chemical properties of
zeolites with their graph-theoretic properties, and so direct the
search?



Igor told us the cautionary tale of Doug Lenat who, in the
1970s, started using computers to generate mathematical
concepts, and whose name has now given us the unit for
measuring bogusity (the microlenat).
A database of potential zeolites is at
https://www.hypotheticalzeolites.net

https://www.hypotheticalzeolites.net


V. Anne Smith

Anne was filling in at quite short notice, and told us about
Bayesian network analysis of genetic, neural and ecological
data.
(It is not so surprising that genomics is connected with discrete
mathematics. Eric Lander, the lead scientist on the Human
Genome Project, did his doctorate in Oxford on coding theory.)
Anne reminded us that not all “big data” are equally useful.
Many observations on a few variables: good. A few
observations on each of many variables: not so good!
A Bayesian network describes non-independence between
variables: A and B are non-independent if P(A | B) 6= P(A),
and the influence of B on A is mediated through C if
P(A | B, C) = P(A | C). Bayesian networks are always directed
acyclic graphs.



There are algorithms which produce a Bayesian network from a
given collection of data. For genetic networks involving
mRNA, how much of the network can you reconstruct, and
how much is wrong? These questions depend sensitively on
the amount of data available. A surprising fact to the audience
was that, although mRNA produces protein, the
mRNA–protein correlations are quite poor.
The methods work much better for neural data, for example,
female zebra finches hearing male song; the reconstructed
networks agree well with what is known from anatomical
studies.



Patric Østerg̊ard

Like most discrete mathematicians, Patric had not thought
much about Big Data until this meeting gave him the
opportunity to step back and reflect.
The problems he works on form a hierarchy: existence;
counting (all, or up to equivalence); classification (a description
of all objects); and characterization (understanding the objects).
One achievement was the classification of Steiner triple systems
on 19 points (there are 11084874829 of them). They were able to
store the compressed data in 39Gb (about three bytes per
system), but in this form the data is not searchable. By a 72-bit
hash function encoding, they produced a 63Gb version of the
data, which they were able to use to show that any system can
be reached from any other by cycle switching.



The graph is so large that the computer cannot hold the entire
thing. We have what he called a big implicit graph, where if we
are at a vertex we can find one (or maybe all) adjacent vertices,
and we can test whether two vertices are adjacent. “Think
global, act local.”
He then told us about his work with Leonard Soicher on the
putative McLaughlin geometry. This is an example where the
program crunches a huge amount of data, but the answer is
likely to be one bit (he guesses “no”).



Rosemary Bailey

Rosemary reminded us that, for the result of data collection to
be useful, it is necessary to think beforehand about how it is
done (and this is where design of experiments comes in).
Statisticians are trained to think that nearly equal replication is
crucial, whereas biologists learn that it is important to compare
everything to controls. We were shown an example arising in
trials of new seed varieties where the best design (minimizing
the sum of variances of estimators of treatment differences)
shifts from one of these paradigms to the other by a sequence of
steps or phase changes as we change the precise number of
varieties being tested and assumptions about blocking.



Several earlier speakers mentioned Laplacian eigenvalues,
which are also important in discussion of experimental design,
where they give us the efficiency factors. Should we think of a
huge experiment as an approximation to a manifold?
The design of experiments for large numbers of varieties with
very small average replication is still challenging!



Charo del Genio

Charo was also here at quite short notice.
Suppose that observation or experiment has given us a certain
network. (He gave an example from the early days of the
spread of the AIDS virus, involving people’s sexual contacts.)
How special is that network? For example, how typical are
parameters such as its average distance, among other networks
with similar properties? (For mathematicians, a network is just
a graph, possibly directed.)
His approach is to generate random networks sharing the
appropriate properties, which can be compared with the
network we are actually looking at. What kinds of properties
are appropriate? He mentioned earlier work on choosing a
random network with specified vertex degree sequence.



His recent work involves the joint degree matrix, which gives
us (for each α and β) the number of edges between vertices of
degree α and vertices of degree β. He showed us how to check
the consistency of the JDM, and if it is consistent, how to
choose a random network with this JDM.
The question of how to deal with errors in the observed
network (a notorious problem in the case of self-reported
sexual contacts), or small failures of the degree sequence or
JDM to satisfy the necessary conditions, provoked a lively (but
inconclusive) discussion.
Also unclear were the hypothesis testing aspects: is the
observed network significantly different from a typical one?



Simon Dobson

The title of Simon’s talk was “A complex cocktail of networks
and reality”. He described modelling the transport systems in
London and New York as multiplexes (multilayer networks,
pairs of networks linked at certain nodes) made up of streets
and metro. The first phase looked just at the topology of the
networks, and explored shortest paths (in terms of time,
assuming a ratio β between one’s speed on the street or in the
metro). The data is available from Open Streetmap, but needs
cleaning before use.
More recent work involves looking at actual flows, using, for
example, Oyster Card data from the London Tube.
These networks are far from random, having grown up with
many geographical and human constraints. For example,
assortativity – the tendency of nodes of high degree to link to
other nodes of high degree – influences the spread of
epidemics.



This led to a discussion of the Plague, and why (though it still
exists, as do rats and fleas), we have not had an epidemic for a
long time.
Simon dreams of a project called “Fake Scotland” which would
simulate the growth of Scotland, based on these constraints.
He ended with a quote from Alexander Solzhenitsyn, First
Circle:

Topology! The stratosphere of human thought! In the
twenty-fourth century it might possibly be of use to
someone . . .



Manish Parashar

Manish began by describing experiments which produce large
quantities of data. The Square Kilometre Array will generate an
exabyte of data a day by 2020. All branches of knowledge are
becoming data-rich. This raises important problems in
management and analysis of data.
But all this pales when compared to the amount of data which
can be produced by simulation on the latest generation of
supercomputers. As we approach exascale science, a machine
will need a dedicated power station just to keep it running.
(My colleague’s response to this was “No wonder these
facilities depend not on the National Science Foundation, but
on the Department of Energy . . . ”)
But there is a huge problem here. Processing speeds have
increased enormously, but speeds of data movement have not
kept pace. So it is now impossible for a modern supercomputer
to save all the data it produces running a simulation! Some
data is described as WORN (“write once, read never”).



The solution that Manish and his collaborators are working on
involves processing the data either in situ or in transit.
Multi-core nodes can have some cores producing the data, and
others analysing it or constructing visualisations. Another use
of local processing is to compress the data so less has to be
moved. A further idea is to send the code to where the data is
rather than vice versa.
This led to an interesting discussion. Arieh Iserles as devil’s
advocate proposed the thesis that high-performance computing
is the enemy of algorithm development, for various reasons:
the architectures of these machines make innovative algorithms
difficult to run, and the programmers find it easy to be lazy and
use the methods they know.
As a general point, with the growth of simulation science,
problems of reproducibility arise. As Manish said, software is
now critical for the reproducibility of science.
(I couldn’t avoid the feeling that as the amount of data grows,
the signal-to-noise ratio plummets.)



Franz Király

Franz departed from his prepared talk on a technical aspect of
machine learning in order to address the question “What is
data science?”
He began with an uncontroversial definition of data, but when
he described the scientific method as

observation→ hypothesis→ prediction→ experiment→
cycle,

many members of the audience objected. In the end we were
not going to solve a problem that has been open for millennia,
so Franz was allowed to proceed.
The talk quickly specialised to machine learning, supervised or
unsupervised. How to measure quantitatively the goodness of
a model? This is only defined relative to the data that is being
analysed. Given a measure of goodness, we can compare our
model; we should compare it to a random guess, and to
state-of-the-art or simple models, to see how we are doing.



Ke Yi

By contrast, Ke gave us a nice technical talk about algorithms
for sampling from a dataset. We assume that we can’t cope
with the totality of data, and we wish to sample efficiently.
The oldest such result, on random sampling from a data
stream, is reservoir sampling. We wish to maintain a random
sample of s elements from a data stream. We must start by
choosing the first s. If we have a sample from n items, and the
(n + 1)st arrives, we keep it with probability s/n; if we keep it,
we discard an existing item (all equally likely). Simple enough,
but Ke pointed out that more than half of the proofs of
correctness on the first page of a Google search are deficient.
He went on to random sampling from distributed streams,
range queries, and from data distributed over many nodes,
where we want to reduce the amount of communication
required.



Jon McLoone

Jon, from Wolfram, told us how to make data science
techniques available to a wider audience. One of the key things
is keeping the walls as low as possible: rather than
cutting-edge programming, the goal is accessibility. All options
must have sensible defaults so that the user can progress
without worrying about setting them; and since data might be
in any format, the translation should just work.
Everything in Mathematica, be it a number, string, picture,
database, or program, is a symbolic object. There is no typing
in the language because everything has the same type.
Part of the talk was a practical version of Franz Király’s talk.
When Franz asked about model evaluation, Jon was able to
show him a long list of options hiding behind a submenu for
the experienced user.
This is not big data; but if it gets a new generation of people
interested in capturing and analysing data and producing and
deploying the results, it’s good for the subject.



Chris Williams

Chris began wearing the hat of his involvement with the
EPSRC-funded Centre for Doctoral Training in Data Science in
Edinburgh, and moved on to his involvement with intensive
care monitoring in a Glasgow hospital.
Data science lies at the intersection of mathematics and
statistics, hacking skills, and substantive expertise. If the first
element is lacking, we are in a danger zone!
Data science has to deal with questions of scale, fusion of data
sources, structure discovery, trust, and ease of use.
We heard about deep learning, a popular topic with students
now, but not the answer to all problems in data science.



Clincal data from patients in intensive care (heartrate, blood
pressure, etc.) is monitored, of course. But various artefacts
affect the data: some is administered by hospital staff (e.g.
taking a blood sample, suctioning the lungs), some is caused by
the monitoring equipment (e.g. damped trace, blockage in the
blood pressure monitoring line). The system they have
developed is good at detecting some of these such as damped
trace (and so reduces false alarms), but not yet good enough for
general use.



Rob Ghrist
Rob talked about the use of algebraic topology (specifically
persistent homology) in the analysis of certain datasets.
I don’t have space here to give a course on algebraic topology,
which he described as “the most useful least used
mathematics”. Our datapoints are often spatial, and we have
edges joining certain points, triangles filling in certain triples,
and so on. Over your favourite field, you take vector spaces
with bases the points, edges, triangles, . . . , and define
boundary maps between them reflecting the incidence
structure. The quotient of the kernel of one map by the image
of the next is a homology group. So these groups reflect
geometric aspects of the data.
For example, H0 tells about connected components; H1, about
cycles; H2, about hollows bounded by surfaces.
More important, they are functorial: maps between spaces
induce maps between the homology groups. Maps between
spaces may be given by, for example, changing the scale of
measurement.



Now we can decompose homology into indecomposable
components. These are described, as the parameter changes, by
“barcodes” indicating the points at which they appear and
disappear. Components which persist for a long time probably
tell us about more interesting features of the data.
Rob mentioned three applications.

I H0 measures persistent clustering, applicable to genetics,
sports data, etc.

I H1 measures holes in the coverage of sensor networks, and
possibly detects whether an intruder can move around
without being detected.

I Higher homology has important recent applications in
neural connections. The signatures of the dimensions of
persistent homology groups in various ranks can
distinguish random connections (as in a fly’s olfactory
system) from geometric connections (as in a rat’s visual
cortex).

New ideas with promise include using cohomology or sheaf
theory, but this is not the place to describe them.



Robert Wilson
Rob began with context, a description of teaching as

“reality”→ data→ information→ knowledge→ wisdom.

These blend into one another without clear boundaries.
In his own field, group theory, the problem is to get
information about groups from data giving generating
permutations or matrices for the groups.
The Classification of Finite Simple Groups was probably the
major achievement of 20th century mathematics. One of these
is the Monster, a “sporadic” simple group of order about 1054

whose smallest permutation representation is on about 1020

points. A single generator for the group would take about 800
exabytes of storage! Matrices are better, since there is a
representation by matrices of order 196882 over the field of two
elements; one of these only takes about 5 gigabytes.
But these matrices are highly structured, and using the
structure and group properties it was possible in the 1990s to fit
the generators (and a program) onto a 1.44MB floppy disc.



More recent work has focussed on the idea that, for example,
we can study permutation groups without using actual
permutations: only a small amount of data in each permutation
is actually required. In this way, the computer algebra system
GAP can handle groups with big permutation representations
(up to about 1018 points, so not quite large enough for the
Monster yet).
Rob concluded by referring to the Atlas of Finite Group
Representations, which I mentioned in my introduction. The
Atlas is designed to be useful by ordinary algebraists with no
special knowledge of how it was constructed.
Unfortunately, like all public services these days, its continued
existence is under threat . . .



Summing up

I There is a big difference between data generated by a
problem in discrete mathematics and data from
observation or simulation in science. We have great
expertise in the first; can we transfer it to the second?

I Producers of large amounts of data should be encouraged
to process it in situ, since moving data is increasingly
expensive and slow compared to processing it.

I However the data is produced, there may be people with
modest computers and no data science expertise who need
to use it. We should store it in a form to make this
straightforward.



I It is good to step back sometimes and think about what we
are doing. But it is not necessary to have a definition of our
subject in order to do it.

I On of the best features of an interdisciplinary meeting like
this one is the contacts we have made with people in very
different areas.

I This is a great opportunity for mathematics, statistics and
computer science to position themselves at the centre of
the university and of the “knowledge economy”. We
should grasp it!


