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The problem of key exchange

A cryptosystem is no better than the security of the key. If
increasingly large keys have to be shared between remote
participants, key security becomes an increasing problem.
In the early 1970s, Diffie and Hellman came up with a really
wonderful idea. Perhaps they thought like this. Alice has to
send a valuable object (the key) to Bob. She doesn’t trust the
postman, Eve, who is likely to open the parcel and steal the key.
So what does she do?
Alice puts the key in a chest, puts a padlock on the chest, and
sends the chest to Bob. Bob cannot open Alice’s padlock, but he
puts on his own padlock and sends the doubly locked chest
back to Alice. At this point, Alice can remove her padlock, and
send the chest back, secured by Bob’s padlock. When Bob
receives it, he can unlock his padlock and open the chest.
The illustration following is by Neill Cameron
(www.neillcameron.com).





Diffie–Hellman key exchange

This scheme would not work if Bob put Alice’s locked chest
inside another chest and locked that one. The crucial
requirement is that the two operations “Alice locks chest” and
“Bob locks chest” commute: they can be performed in either
order, the result will be the same.
To take an example, putting on your shoes and your socks
don’t commute. So if you put on your socks and then your
shoes, you cannot then take off your socks before your shoes!
So Diffie and Hellman solved the problem of key exchange by
finding mathematical functions which are equivalent to the
padlocks. The requirements are:

I each operation is easy to perform in both directions if the
key is known, but very hard to undo if the key is not
known (so that Eve, without the keys, cannot open the
chest);

I the two operations commute with each other.



But commutativity is not enough.
In the first lecture we saw a one-time pad using binary
addition. Let us suppose that Alice and Bob decide to use this
method. Suppose the text to be exchanged is p, Alice’s key is
kA, and Bob’s key is kB.
According to the protocol, Alice sends p + kA to Bob; Bob sends
p + kA + kB to Alice; and Alice sends
(p + kA + kB)− kA = p + kB back to Bob. Then Bob subtracts his
key and gets (p + kB)− kB = p. So far, so good.
If Eve intercepts just one of these messages, she can do nothing.
But we must assume that she intercepts all three. Then she
needs no cleverness at all to get the text p, just a little algebra.
Add the first and third and subtract the second:

(p + kA) + (p + kB)− (p + kA + kB) = p.



Diffie–Hellman key exchange, 2

The operations Diffie and Hellman chose were, essentially,
raising a number to a power. Easy to do, hard to undo (do you
remember how to work out square roots by hand?)
The commuting requirement says that

(na)b = (nb)a,

which is true.
(I have cheated slightly. Taking powers of numbers gives
unreasonably large results, so they used a system called
modular arithmetic to stop the numbers growing too large. But
this is not a maths lecture . . . )



Trapdoor one-way functions

Mathematicians were used to asking whether a problem (like
squaring the circle) could or could not be solved. They were
much less familiar with the idea that the method to solve a
problem might be well known but the labour required so large
that, for practical purposes, the problem was unsolvable.
Just before the work of Diffie and Hellman, people like Jack
Edmonds, Stephen Cook, and Richard Karp had introduced the
ideas of the hardness of a mathematical problem, ready for the
cryptographers to take up.
A trapdoor one-way function is a mathematical function (that
is, a black box turning inputs into outputs) with the following
properties:

I given an input, it is easy to calculate the output;
I given an output, it is hard to calculate the input, but there

is an additional piece of information (the key) which makes
this calculation easy.



Public-key cryptography

The next brilliant idea was that, given a rich supply of trapdoor
one-way functions, it is possible to do more than just key
exchange; one can create a full-blown cryptosystem in which
key exchange is not necessary!
It works like this. Each user chooses a one-way function and a
key to make inverting it easy. They publish their function
(which is used for encryption) in a public directory.
So suppose that Alice wants to send a message to Bob. She
looks up Bob’s encryption function eB in the directory, and uses
this to encrypt her plaintext message p to Bob as eB(p), which
she then sends to Bob.
Bob can decrypt the message since he possesses the key. But
Eve doesn’t have the key (Bob doesn’t have to send it to
anyone, and can keep it secure). So although in principle she
can decrypt the message, in practice this takes so long
(hundreds of years, say) that when she gets the answer, it is no
longer of any use.



RSA

Merkle and Hellman suggested a possible class of one-way
functions which could be used. But a much better class was
proposed a couple of years later by Rivest, Shamir and
Adleman. This quickly gained acceptance.
The RSA scheme went back to Diffie’s and Hellman’s idea of
raising numbers to a power. The trick was that the modulus
used for the modular arithmetic should be the product of two
huge prime numbers. The key is the factorisation of this
modulus: knowing this allows the inverse of taking powers to
be done easily.
Thus, the security of RSA relies on the fact that, while it is fairly
easy to find two large prime numbers, and very easy to
multiply them, the reverse problem of breaking a composite
number into its prime factors is very hard (as far as we know).
Adleman also took time out to “debunk” the Merkle–Hellman
system. Whether or not he was right, this had the effect of
killing it off as a commercial venture.



Factorisation

We have known since the time of Euclid that every whole
number can be factorised into prime factors in a unique way
(up to the order of the factors).
The problem of finding such a factorisation has fascinated
mathematicians for centuries. Many methods have been
proposed, including the general number field seive, Pollard’s
rho, and Fermat’s method.
As the state of the art improves, users of RSA are forced to
choose larger and larger moduli to keep the cipher secure.
Fortunately, large primes are easy to find: there are efficient
tests for primality, so just pick large numbers at random until
you discover a prime.



The alternative history

That is the story as it would have been told until the end of the
1990s.
In 1997, GCHQ put an announcement on their website saying
that public-key cryptography and key exchange had been
invented at GCHQ a few years earlier than the well-known
developments in the USA.
In a nutshell, James Ellis had come up with the notion of
public-key cryptography in 1970; Clifford Cocks had found a
way to implement it; and Malcolm Williamson had invented
Diffie-Hellman key exchange. The work was never made
publicly available.
Ironically, Ellis died a month before the public announcement
was made.



Diffie and Ellis

In a lecture on the history of cryptography, Whitfield Diffie told
how he had heard rumours (possibly from NSA) of the
independent British invention.
He went to Cheltenham, met up with James Ellis, took him to a
pub, and bought him plenty of scrumpy cider. Their
conversation ranged over many things, but according to Diffie,
Ellis didn’t breathe a word about his discovery many years
earlier.
Credit doesn’t always go to the right person, but in this case,
the two American teams not only came up with the ideas but
developed them into a working cryptosystem, while GCHQ
did not. So Diffie, Hellman, Rivest, Shamir and Adleman
probably deserve the credit.



Signing a message

The RSA formalism also allows messages to be signed; the
signature gives a guarantee that the message really comes from
the supposed sender.
Suppose that Alice wants to send a signed message to Bob.
First she does a strange thing. She regards her plaintext as if it
were a ciphertext addressed to her, and decrypts it: in other
words, she applies her decryption function dA to it. Then she
encrypts it with Bob’s public key, calculating eB(dA(p)), and
sends this to Bob.
Bob decrypts with his secret key, obtaining dA(p). This is
gibberish, but Alice has told him separately to expect a signed
message from her. So he encrypts it with Alice’s public key,
giving eA(dA(p)).



Signing a message, 2

Remember the commuting property of the RSA system.
According to this,

eA(dA(p)) = dA(eA(p)) = p,

since encrypting and then decrypting p gives back the original
p.
So now Bob can read the message. But the fact that he can read
it also tells him that it must have been encrypted with Alice’s
private key eA. Since nobody but Alice has access to this key,
Bob knows that the message really did come from Alice.
Furthermore, Bob can keep a copy of dA(p). If at some later
date Alice claims that she didn’t send the message, Bob has the
evidence to prove that she did!



An opportunity for the cryptanalysts

In some ways, public key cryptography makes Eve’s life easier.
In the old system, each message must be tackled
independently. (If you know about Enigma, remember that the
key changed each day, and until the day’s key had been found,
no messages could be read.)
But now, Eve can read Bob’s public key; if she can “reverse
engineer” his private key, she can read all messages addressed
to Bob. This can be done independently of the messages being
sent, and all the computing power that Eve has can be thrown
at the problem. If solved, then old messages can also be read.
(This is important in law enforcement, for example, as we have
seen in recent cases involving iPhones.)
So the old discipline, such as changing keys frequently, is still
as important as ever!



Not the answer to everything

Public-key cryptography offers enormous advantages: at a
stroke it solves the problem of key distribution and allows
messages to be signed.
But we noted that improvements in factoring algorithms keep
pushing RSA users to larger and larger primes. The operation
of RSA is computationally intensive, even though it can be
done. Old-fashioned stream ciphers are computationally much
simpler.
So typically, public-key cryptography is used by Alice to send
Bob a secret key for a stream cipher, which they can then use in
their communication.



Secret sharing

There are many other aspects of cryptography that impinge on
us. For example, a bank president wants to ensure against a
rogue director going to the vault and taking the money, and so
wants a system where the presence of more than one director is
required to open the vault. Moreover, even if some of the
directors get together, they can deduce no information about
the passwords held by the remaining directors. This is easy.
Just give each director a random password and require that
they are all entered.
But it may be impractical to get all the directors together. If
there are n directors, and we require that any m can open the
vault, but m− 1 cannot get any information about the
passwords they don’t have, can it be done?
Yes, finite geometry provides us with a solution to this problem.



Enter quantum theory

The biggest change on the horizon for cryptography is likely to
be caused by quantum theory.
This theory, invented in the 1930s, is the most accurate physical
theory ever derived, and makes predictions which have been
tested to many places of decimals by careful experiment.
But it is also a puzzling theory, which denies that subatomic
particles are “little hard balls”, giving them a much more
shadowy existence. The famous physicist Richard Feynmann
said,

There was a time when the newspapers said that only
twelve men understood the theory of relativity. I do not
believe there ever was such a time . . . On the other hand, I
think I can safely say that nobody understands quantum
mechanics.



Quantum basics

It is important to understand that quantum theory describes
whole systems rather than individual particles. Also, it
involves complex numbers, a number system including the
square root of −1 which has many good properties lacked by
the real numbers (e.g. any polynomial equation has a solution).
The philosophical difficulties of quantum mechanics arise from
the fact that we treat a system under observation in the
laboratory as being separate from the system of the observer
and the measuring instruments she uses to study it. Some
sciientists speculate that, if we were to treat the entire universe
as a single quantum system, these difficulties would disappear.
But science proceeds by reduction . . . so I will consider a
system of n elementary particles in isolation in a magnetic field.
The only property I will be interested in is their spin, which
(according to quantum rules) is aligned with the magnetic field
in one of two directions, “up” and “down”. We can use these
two directions to represent the bits (binary digits) 1 and 0.



Quantum basics, 2
But rather than the particle being definitely in one state or the
other, the rules of quantum mechanics allow it to be in a
“mixture” or “superposition” of the two states: so much “up”
and so much “down”, or mathematically p ·Up + q ·Down.
Here p and q are complex numbers and satisfy the condition
|p|2 + |q|2 = 1. The rules then specify that, if we measure the
spin, then with probability |p|2 we will find that it is up, and
with probability |q|2 we will find that it is down.
Moreover, after the measurement, if we actually found that the
particle spin was up, then the particle will be in the state Up:
that is, the description changes discontinuously when we make
a measurement. This is called the collapse of the wave function,
and is probably the biggest philosophical mystery in quantum
mechanics.
Thus one particle is described by a 2-dimensional complex
space. The rules also show that a system of n particles is
described by a space of dimension 2n, called a tensor product of
the state spaces for the individual particles.



Quantum computation

How do we factorise a whole number N into prime factors?
The simple answer is trial division: divide N by 2, 3, . . . , until
either we find a number which divides exactly (in which case
we divide it out and have a smaller number to deal with) or we
get up to

√
N (when we can be sure that the number is prime).

Trial division for a number of 100 digits can thus take up to 1050

steps, and would take far longer than the age of the universe
even if each step could be carried out in a nanosecond. The
sophisticated improvements we saw earlier don’t affect this
estimate much.
But a quantum system of n particles is represented by a state
space of dimension 2n. As long as 2n >

√
N, that is, n is bigger

than about 170, we can assign a dimension to each trial divisor
and arrange that only those corresponding to factors of N will
survive to the output.
This is the basis of quantum computation.



Shor’s theorem

The notion of building a quantum computer received a big
push in 1994, when Peter Shor showed that indeed a quantum
computer could factorise large numbers much more quickly
than a classical computer (in time which is a polynomial in
log N rather than of order

√
N).

In other words, if we could build a quantum computer, then
factorising large numbers would become practical, the RSA
cipher would no longer be secure, and the whole of internet
commerce would be killed off overnight.
Clearly this hasn’t happened yet! Could it happen in future?



Building a quantum computer

Since Shor’s Theorem was proved (and similar theorems for
other public key cryptosystems), many groups of scientists and
engineers have tried to build a quantum computer.
There have been some small successes. The first quantum
computer which could find the factors of 15 (this happened in
2001) raised some interest, but progress has been slow since
then. However, work continues: documents revealed by Ed
Snowden confirm that the NSA was attempting to develop a
quantum computation facility. (Maybe it already exists?)
The problem is that the quantum system must be isolated from
its environment while it does the computation, and then
reconnected for the readout. Some scientists suspect that there
is a relationship between this “time to decoherence” and the
clock speed of the computer. This would put a physical limit on
what can be achieved by a quantum computer. We don’t know.



Building a quantum computer, 2

Other teams all over the world are rushing to build a practical
quantum computer:



Quantum computers don’t do everything

There are some problems, such as factorisation, and the discrete
logarithm problem (used in the El-Gamal cipher and
Diffie–Hellman key exchange) which quantum computers can
solve very fast. But there are other problems where they offer
no obvious speed-up.
So some cryptographers are looking back at some old ciphers,
such as the Merkle–Hellman knapsack cipher, and the McEleice
cipher based on error correction, which were abandoned in
favour of RSA, to see whether they might be the basis of a
public key system not vulnerable to a quantum computer.
Both these are based on trapdoor one-way functions. The
knapsack problem asks, given a knapsack of capacity b and a
number of items with sizes a1, . . . , an, we can choose a set of ais
which together exactly fill the knapsack – hard in general, but
easy in some special cases. The secret key hides the structure of
these special cases.



Quantum cryptography

However, while quantum theory raises the spectre of breaking
RSA and similar ciphers, it also brings the possibility of an
unbreakable cipher whose key distribution is based on
quantum theory.
The essential principle is that, when we observe a quantum
system, we change its state in an unpredictable way. So Eve
cannot intercept Alice’s transmission to Bob without leaving
her fingerprints on it: Alice and Bob can check whether Eve has
intercepted the key transmission, and discard it if so.
I will describe the process in a bit more detail. As just
suggested, Alice uses the quantum channel to send a “session
key” to Bob; if this key is a random string, then Alice and Bob
can communicate securely over a conventional channel using it
as a one-time pad.



Quantum cryptography 2

We use photons (“particles of light”), with the advantage that
they can be transmitted over optical fibre.
To simplify slightly, a photon has a direction of polarisation,
perpendicular to its direction of travel. We can prepare a
photon with a given direction of polarisation; we can then
measure polarisation in any two perpendicular directions. If
one of these directions corresponds to the prepared direction,
the answer is “yes” for that direction and “no” for the other.
But if it makes an angle of 45◦ with the prepared direction, the
answer is “yes” to one and “no” to the other, randomly with
probability 1/2 for each outcome.



Quantum cryptography, 3

Alice prepares two random binary sequences of length N, say
a1 . . . aN and b1 . . . bN. She sends N photons to Bob, polarised
according to the values of (ai, bi) in the following scheme:
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(0, 0)

(1, 1)

(0, 1)

(1, 0)

The first number chooses orthogonal or diagonal axes, the
second specifies one of the two axes.
Bob chooses a random sequence c1 . . . cN. If ci = 0, he measures
the polarisation in the vertical and horizontal directions, and
writes di = 0 if he finds horizontal, di = 1 for vertical. If ci = 1,
he measures in the two diaagonal directions, and puts di = 0
for NW-SE and di = 1 for NE-SW.



Quantum cryptography, 4

Now Alice and Bob communicate over an ordinary (maybe
insecure) line. Alice reads out her a sequence and Bob his c
sequence. They will agree about half the time, since they are
random; positions where they disagree are discarded. It
follows that bi = di on the remaining positions, so Alice and
Bob have shared a key of length about N/2.
To check for tampering by Eve, Alice and Bob sacrifice a certain
number of bits. Whatever Eve does, about half the time her
interference will change the polarisation of the photon, and half
of the time this happens Bob will detect it. So by comparing a
randomly chosen set of bits, say 2n (where n is much smaller
than N) and revealing these bits to each other, Eve’s effect will
be visible except for the (3/4)n chance that “the coin came
down heads every time”. Taking n = 241, the chance of this
happening is smaller than 1 in 230, much less than experimental
error.



Not there yet . . .

This is not yet the answer to a cryptographer’s dreams. Apart
from the trouble and expense required to communicate in this
way, our technology is not yet good enough to reliably send
just one photon at each step of the process. If a small group of
photons are sent, Eve might trap one of them to observe and
leave the others to continue to Bob.
Despite the problems, this appears to be a practical solution,
and the implementation is further advanced than quantum
computation.
Perhaps in the future we will all have small quantum devices
on our desks, and sending secure messages to each other. But
the lesson of history is that the cryptanalysts have always
caught up with the cryptographers sooner or later . . .


