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There have been rather a lot of road closures around St
Andrews recently:

From: Daniel Glynn <Daniel.Glynn@vitalenergi.co.uk>
Subject: Road Closure

Date: 22 September 2016 13:13:54 BST

All,

Due to circumstances out of our control we have had to close the main road between Purdie building and the Sports
Centre/ Physics & Astronomy, vehicles parked in the higher car park will be able to exit, however no further access
in will be granted, we envisage the road will be back open by end of business Monday 26th September

We apologise for any inconvenience caused

Kind Regards

Dan Glynn

Project Manager
DDI: +44 (0) 7557110736




Permutation groups and transformation semigroups

This is part of a big project, joint with Jodo Aratjo and others,
to use our knowledge of finite permutation groups to get
information about transformation semigroups.

Given a transformation monoid M on a set (), the units of M
form a permutation group G, and a generating set for M must
contain a generating set for G (you can’t generate permutations
using non-permutations!)

So, at least to get things started, it is natural to consider the case
M = (G, a), where G is a permutation group and a a
non-permutation. A typical question is:

Question
Which permutation groups G guarantee that M = (G, a) has some
specified nice property, for all or some choices of non-permutation a?



Semigroup properties

Some of the semigroup properties which have been considered
include

» synchronization (S is synchronizing if it contains a
transformation of rank 1);

» regularity (S is regular if for alla € S there exists b € S
such that aba = a);

» idempotent generation (see below).

Here the rank of a map on () is the cardinality of its image.
Work on synchronization is partly motivated by the famous
Cerny conjecture, which states that if a semigroup S = (A) on n
points is synchronizing, then there is a transformation of rank 1
which is a word of length at most (n — 1)? in A. I will not
discuss further this very seductive conjecture ...



ldempotent generation

An idempotent is a map e satisfying ¢ = e.

Question
For which transitive permutation groups G is it true that, for all
maps a of rank k, the semigroup (G, a) \ G is idempotent-generated?

(The case k = 1 is trivial since any rank 1 map is idempotent.)
We have conjectured a complete answer to this question, and
proved part of it.



|dempotents

Start with an easier question. For which transitive groups G is
it true that, for all maps a of rank k, (G,a) \ G contains a rank k
idempotent (an element e with ¢? = ¢)?

The kernel of a is the partition of {1, ...,n} into inverse images
of points in the image of a.

An idempotent has the property that its image is a section (or
transversal) to its kernel partition. Conversely, if the image of a
is a section to its kernel, then some power of 2 is an idempotent.
So, if a has rank k, then there is an idempotent of rank k in (G, a)
if and only if there is an element ¢ € G mapping the image of a
to a section for the kernel.

So a necessary and sufficient condition is that G has the
k-universal transversal property: given any k-set S and
k-partition P, there is an element of G mapping S to a section
for P.



2-ut and primitivity

For k > 2, the k-ut property is very restrictive. But for k = 2, it
is equivalent to something very familiar to permutation group
theorists!

A group G has the 2-ut property if and only if every orbit of G
on 2-sets contains a section of every 2-partition. This is
equivalent to saying that every orbital graph for G (graph with
edge set SG, the G-orbit of S) is connected.

An old theorem of Donald Higman says that this is equivalent
to primitivity of the group G, the property that G preserves no
non-trivial partitions of {1,...,n}.

From now on, I will consider just the case k = 2.



The Houghton graph

Idempotent generation requires a stronger condition.

Given a group G, and a k-subset S and k-partition P of its
domain, the Houghton graph H(G, k, P, S) is the bipartite graph
with vertex set PG U SG, with an edge from S’ to P’ whenever S’
is a section of P'.

Let P and S be the kernel and image of a. If there is a product of
idempotents in (4, G) \ G having kernel P’ and image S’, then
the image of each idempotent is a section for the kernel of the
next, so there is a path from P’ to S’ in H(G, k, P, S).

So connectedness of the Houghton graph is a necessary
condition for idempotent generation.



Theorem

(G, a) \ G is idempotent-generated for every rank 2 map a if and only
if every 2-Houghton graph for G is connected.

We will say that G has the 2-Hc property if this condition holds.
As this theorem suggests, 2-Hc is a strengthening of primitivity.



A reformulation

The condition in the theorem is still time-consuming to check,
since there are exponentially many 2-partitions of {1,...,n}.
By focussing on the 2-sets instead, we can find a much more
efficient test:

Theorem

A primitive permutation group G on {1,...,n} has the 2-Hc
property if and only if, for every G-orbit O on 2-subsets of {1,...,n},
and every maximal block of imprimitivity B for the action of G on O,
the graph with edge set O \ B is connected.

This is better since there are only a quadratic number of 2-sets.



Proof

Suppose that the graph with edge set O \ B is disconnected,
where O is an orbit on 2-sets and B a maximal block for the
action of G on O. Let P be the partition into a connected
component and its complement, and S a 2-setin B. If Sis a
section for Pg, then S¢~! is a section for P, and so S¢~! € B
(since the edges in O \ B fail to be sections). Thus all the 2-sets
in a component of the Houghton graph lie within B, and this
graph cannot be connected.

Conversely, suppose that the Houghton graph H(G, 2, P, S) is
disconnected. The edges within connected components are
blocks of imprimitivity for G acting on O = SG; let B be one of
these, with S € B. Then the pairs in O \ B cannot be sections for
any partition in the block containing S, since they are not
connected to S in the Houghton graph. So the graph with edge
set O \ B is disconnected, with the parts of P as unions of
connected components. If O \ B is disconnected, so is O \ B/,
where B’ is any maximal block containing B.



Using the test

Of course, there are only polynomially many orbital graphs to
check. For each one, there are hopefully not too many maximal
blocks of imprimitivity. And testing connectedness is fast!

So you could just go to the computer, start up GAP, and begin
testing examples ...

But can we find the maximal blocks efficiently?



How many blocks?

Is there a polynomial upper bound for the number of maximal
blocks of imprimitivity in a transitive group?

A special case is Wall’s conjecture, asserting that the number of
maximal subgroups of a finite group is not greater than the
order of the group. (This is the case where the transitive group
is regular.) Wall’s conjecture was disproved by participants at
an AIM workshop, written up by Guralnick, Hodge, Parshall
and Scott; but they expect there to be an upper bound n'*¢,
where maybe € = 10~°. But this still leaves some questions:

» What about the general case?
» Even if the number is not too large, can we find them all in
polynomial time?



How to find them?

Checking whether a transitive group is primitive can be done
in polynomial time; and a minimal block of imprimitivity can
be found in polynomial time. (For each pair of points, check
connectivity of the orbital graph in which that pair is an edge.)
What about maximal blocks?

We can find one block, by recursively finding a minimal block
and computing the group induced on the set of its translates
(moving up in the lattice of blocks containing a point). But we
need to check all maximal blocks.

Of course we have more information: our group is a primitive
group acting on the edges of some orbital graph ...



An example

Consider the automorphism group of a m x m grid: two points
are joined if they lie in the same row or column. The
automorphism group is the wreath product 5,1 S, in its
product action on m? points.

The edges fall into two blocks of imprimitivity under the
automorphism group: horizontal and vertical.

If workmen come and dig up all the vertical roads, then it is
impossible to get from one row to another. So this primitive
group fails to have the 2-Hc property.



First generalisation: non-basic groups

Here is part of my take on the O’Nan-Scott theorem.

A primitive permutation group is non-basic if it preserves a
Cartesian power structure on the set of points, i.e. if it is
embeddable in the wreath product S, ¢ Sk with the product
action.

A primitive group is basic otherwise.

Just as in the previous example, it is easy to show that a
non-basic primitive group fails to have the 2-Hc property.

The O’Nan-Scott theorem gives us good information about the
basic primitive groups: they must be affine, diagonal, or almost
simple.



Second generalisation

Another way of looking at the example leads to the following.

Proposition

Let G be a primitive permutation group. Suppose that G has an
imprimitive subgroup of index 2. Then G does not have the 2-Hc
property.

Suppose that G has an imprimitive subgroup N of index 2. Let
P be a system of imprimitivity for N. Since G does not preserve
P, it interchanges it with another system 5. A non-empty
intersection of a block in P with a block in B is a block for G,
and so has cardinality 1. Thus we can consider the incidence
structure (P, B), whose elements are called “points” and
“blocks”, a point and block being “incident” if they have
non-empty intersection.

Thus G is a group of automorphisms and dualities of the
incidence structure, and the given action is on the set of flags
(incident point-block pairs) of the structure.



Now take a pair of flags sharing a point, and form the orbital
graph in which this is an edge. The automorphisms form a
subgroup of index 2, and the edges fall into two blocks
depending on whether the shared element is a point or a block.
If we remove edges of one type, we cannot move between flags
with different elements of the other type.

There are two kinds of adjacency:

—e————isjoined to —e——

and

is joined to

If all connections of the second type are removed, then we
cannot move from a flag to another flag with a different point!



Examples for the last result include groups of projective spaces
(on point-hyperplane flags or on point-hyerplane antiflags, or
on i-space/(n — 1 — i)-space flags), symplectic generalised
quadrangles in characteristic 2, G, generalised hexagons in
characteristic 3, and some sporadic examples such as
PGL(2,11) with degree 55 or 66, and HS : 2 with degree 22176
coming from symmetric 2-designs with 2-transitive groups.
The examples of degree up to 120 are

» L3(2) : 2, degrees 21 and 28 (flags and antiflags in Fano
plane);

Se : 2 and subgroups, degree 45;

L3(3) : 2, degrees 52 and 117;

Ly(11) : 2, degrees 55 and 66;

Aut(L3(4)) and subgroups, degree 105;

Sg = L4(2) : 2, degrees 105 and 120;

Sz, degree 120.
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More examples

Not all examples have such a nice geometric structure.

Let p be a prime congruent to =1 (mod 5) and to +3 (mod 8).
Then PGL(2, p) contains a conjugacy class of subgroups
isomorphic to As, which splits into two classes in PSL(2,p). An
Ay subgroup of one of these As’s is normalised by S4 in
PGL(2,p); elements of S4 not in A4 conjugate the As to one in
the other PSL(2, p) class.

Thus PGL(2, p), on the cosets of Sy, is a primitive group of
degree p(p? — 1) /24, which has an imprimitive subgroup of
index 2; the corresponding incidence structure has five points
in a block.

There are also a couple of sporadic actions of M, : 2.

I do not see the prospect of determining all these groups ...



From duality to triality

There are further examples in which duality is replaced by the
remarkable phenomenon of triality, associated with split
quadratic forms in 8 variables.

The geometry of a split quadric in 8 vector space dimensions
consists of the totally singular points, lines and solids
(projective 3-spaces) on the quadric. The solids fall into two
families: two solids belong to the same family if and only if
their intersection has even codimension.

The principle of triality asserts that if the labels “point”, “solid
of class 1” and “solid of class 2” are permuted arbitrarily, the
lines being preserved, then the truth of all geometric properties
remains unaltered.

solids 1

points lines

solids 2



Thus, PQ)(8, q) : S3 acts on flags consisting of a point and a pair
of maximal singular subspaces of opposite types in the
associated quadric, and these examples also fail the 2-Hc
property.

The smallest example arising in this way, with g = 2, has
degree 14175.

Triality was discovered by Eduard Study and developed by
Elie Cartan. It is connected with other remarkable things such
as the octonions, spinors, and the Leech lattice.



A conjecture

Conjecture

Let G be a basic primitive permutation group. Suppose that G does
not have an imprimitive normal subgroup of index 2, and is not one of
the triality examples just mentioned. Then G has the 2-Hc property.
Hence, for any rank 2 map a, the semigroup (G, a) \ G is
idempotent-generated.

This conjecture has been checked computationally for all
degrees up to 130 and many larger degrees. No
counterexamples have been found.



Some cases

We can settle various cases of the conjecture: it is true if
> 7 1is prime;
» nis the square of a prime;
» G is 2-homogeneous;
» Gis S, or Ay, acting on k-sets.

As noted, a group with 2-Hc must be basic, and hence is affine,
diagonal or almost simple. It would be nice to resolve at least
the first two cases.

I will give proofs of two of the above assertions:
2-homogeneous groups, and groups of prime-squared degree.



2-homogeneous groups

Let G be 2-homogeneous: that is, G has a single orbit O
containing all 2-sets. There is a single orbital graph, which is
the complete graph.

If B is a block, then O \ B is the union of the other blocks; so, if
O\ B is disconnected, then B is disconnected.

But the complete graph cannot be the union of two
disconnected graphs.

So any 2-homogeneous group is 2-Hc.



Groups of degree p?

A theorem of Wielandt asserts that a primitive group of degree
p2 (for p prime) is affine, or contained in S, ! S», or is
2-transitive. In the second case, 2-Hc fails, while in the third, it
holds. So it is the affine case which has to be considered.

The argument is slightly fiddly but not difficult. Such groups, if
not contained in S, ¢ 53, do have the 2-Hc property.



Conclusion

In the last two weeks, Cheryl Praeger and I have looked at one
further class of primitive groups, those of type HS, though we
don’t have a definitive result yet.

Any help in proving our conjecture, or in establishing exactly
which primitive groups fail the 2-Hc property, would be most
welcome!

...for your attention!



