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The dungeon

You are in a dungeon consisting of interconnecting caves. Each
cave has two one-way exits, coloured red and blue; there is a
third exit, which in one cave leads to freedom, and in the others
to instant death. You have a map but don’t know where you
are.
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You can check that the sequence BRRRBRRRB will bring you to
room 2 from any starting point.
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Automata

A (finite-state, deterministic) automaton is a black box with a
finite number of internal states. If a symbol from an alphabet is
input, it undergoes a state transition. (Imagine that there are
red and blue buttons on the box.)

Our automata are very simple: they don’t have “accept states”,
and so they don’t recognise languages; you can start in any
state.
An automaton can be represented combinatorially by a directed
graph (whose vertices are the states) with edges labelled by
symbols of the alphabet, so that there is exactly one edge with
each label leaving each vertex, as in the preceding example.
Algebraically, a transition is a transformation on the set of
states; since we may compose transitions, an automaton is a
transformation monoid on the set of states, with a prescribed
set of generators.
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Synchronization

An automaton is said to be synchronizing if there is a sequence
of inputs which brings it to a known state, regardless of its
starting point. Such a sequence is called a reset word.

The example on the preceding slide had a reset word of
length 9 (but none of shorter length).

Problem (The Černý conjecture)

If an n-state automaton is synchronizing, then it has a reset word of
length at most (n− 1)2.
Our example and the obvious generalisation shows that, if true,
this bound is best possible. But the conjecture is still open after
half a century!
We can test whether an automaton is synchronizing in
polynomial time, but finding the shortest reset word is
NP-hard.
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Synchronization and graph endomorphisms

A transformation monoid is synchronizing if it contains a
transformation of rank 1 (mapping the whole set to a single
point).

There is a single obstruction to synchronization. An
endomorphism of a (simple) graph is a map from the vertex set
to itself which carries edges to edges.

Theorem
A monoid M is not synchronizing if and only if it is contained in the
endomorphism monoid of a non-null simple graph whose clique
number and chromatic number are equal.
One way round is clear; the other way, given a monoid M,
define a graph where v ∼ w if and only if no element of M
maps v and w to the same place, and check that this graph has
the required property.
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Synchronizing groups

With a few exceptions, all known examples meeting the Černý
bound have monoids of the form M = 〈G, a〉, where G is a
group of permutations, and a a transformation which is not a
permutation. I will consider only this type in future.

Abusing notation, we call a permutation group G
synchronizing if the monoid generated by G and a is
synchronizing for all non-permutations a (on the set Ω of
states).
Our question now is:

Question
Which permutation groups are synchronizing?
This turns out to include many problems of great interest from
extremal combinatorics and finite geometry, as I shall show
you.
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Synchronizing groups, 2
From our earlier theorem, we see:

Theorem
A permutation group is non-synchronizing if and only if it is
contained in the automorphism group of a non-trivial graph with
clique number equal to chromatic number.
(The “trivial” graphs excluded are complete and null graphs.)

Corollary

I A synchronizing group is transitive.
I A synchronizing group is primitive (preserves no non-trivial

partition of Ω).
I A synchronizing group is basic (preserves no non-trivial

Cartesian product structure on Ω).

For example, if G preserves a partition with m parts each of size
k, then it preserves a complete multipartite graph, which has
clique number equal to chromatic number.
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A necessary condition

A vertex colouring of a vertex-transitive graph with the
smallest number of colours has the property that the colour
classes all have the same size.

Hence a necessary condition for such a graph to have clique
number equal to chromatic number is:

The product of the clique number and the
independence number of the graph is equal to the
number of vertices.

So, for a given group G, we may consider G-invariant graphs
and their complements in complementary pairs: if a graph fails
this test then it and its complement do not need to be
considered further.
This also shows that a transitive permutation group of prime
degree is synchronizing.
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The game

The game now is: Choose your favourite family of basic
primitive permutation groups; try to decide whether or not the
groups in the family are synchronizing.

I will give several examples:
I symmetic groups acting on k-sets;
I general linear groups acting on k-spaces;
I classical groups acting on polar spaces;
I some miscellaneous examples.

If G has r orbits on unordered pairs of points of Ω, then there
are 2r − 2 non-trivial G-invariant graphs to check. (Each orbit
may consist of edges or non-edges; and two trivial graphs must
be excluded.)
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Sn acting on k-subsets, k = 2

We consider the action of the symmetric group Sn on the set of
k-subsets of {1, . . . , n}. This group is primitive and basic if
n > 2k.

We begin with the case k = 2. The two non-trivial graphs
correspond to joining 2-sets if they intersect, or joining them if
they are disjoint.
The first graph is the line graph of Kn: its clique number is
n− 1, a maximal clique being all edges through a point. The
second graph has clique number

⌊ n
2

⌋
.

The chromatic number of L(Kn) is the chromatic index of Kn,
which is n− 1 if n is even, or n if n is odd.
So Sn on 2-sets is synchronizing if and only if n is odd.
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Sn acting on k-subsets, k = 3
The analogous result for Sn on the set of 3-subsets (for n ≥ 7) is
that it is synchronizing if and only if n is congruent to 2, 4 or 5
(mod 6) and n > 8. There are six invariant graphs; I will sketch
the argument in two cases.

Consider the graph whose vertices are the 3-sets, two 3-sets
joined if and only if they have non-empty intersection. The
clique number is (n−1

2 ), a maximum clique consisting of all the
3-sets through a point. The chromatic number is (n−1

2 ) if n is
divisible by 3 (take a Baranyai partition of the 3-sets), and
greater otherwise.
Consider the graph whose vertices are the 3-sets, joined if and
only if they intersect in at least two points. The clique number
is n− 2, a maximum clique consisting of all 3-sets containing
two given points. The chromatic number is at least n− 2;
equality holds if and only if there is a large set of Steiner triple
systems, a partition of the 3-sets into Steiner triple systems.
These exist for all n ≡ 1 or 3 (mod 6) except for n = 7.
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equality holds if and only if there is a large set of Steiner triple
systems, a partition of the 3-sets into Steiner triple systems.
These exist for all n ≡ 1 or 3 (mod 6) except for n = 7.



Sn acting on k-subsets, k > 3

The complete answer for larger values of k is not known.

It is clear from what is said above that it is going to involve
ingredients like the Erdős–Ko–Rado theorem, Baranyai’s
theorem, Lovász’s theorem on the chromatic number of Kneser
graphs, the existence of t-designs and of large sets of t-designs
for various parameters. Other considerations arise as well.
There is some beautiful combinatorics here, and I recommend
the problem to anyone interested in a challenge!
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GL(n, q) acting on k-spaces

An obvious analogue of the symmetric group acting on the set
of k-subsets is the general linear group acting on the set of
k-dimensional subspaces.

After Peter Keevash’s beautiful theorem on the existence of
designs, one of the most important problems for design
theorists is to construct vector space analogues: given n, k, t, λ,
we want collections B of k-dimensional subspaces of an
n-dimensional vector space over the finite field GF(q), such that
any t-dimensional subspace is contained in precisely λ
members of B. A few examples are known but there is no
general existence result!
Hopefully it is clear from my remarks that testing
synchronization for this class of groups will involve re-doing a
lot of the combinatorics of sets and subspaces (including all the
theorems mentioned earlier), in the setting of vector spaces and
subspaces. Among this combinatorics, the existence of designs
and large sets of designs will certainly feature prominently.
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Classical groups on polar spaces

Another important class of groups consists of the classical
groups (the symplectic, orthogonal and unitary groups), acting
on the points of their associated polar spaces. The geometry
associated with such a group is a non-degenerate bilinear,
Hermitian or quadratic form on a vector space over a finite
field: the points and lines of the polar space are the
1-dimensional and 2-dimensional subspaces on which the form
is identically zero. So two points are collinear if and only if they
are orthogonal with respect to the form.

The automorphism groups are primitive and (except for the
4-dimensional orthogonal groups of split type acting on ruled
quadrics) are also basic.
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Ovoids and spreads

In a polar space,
I a spread is a partition of the point set into subspaces of

maximum dimension which are totally isotropic (that is,
on which the form is identically zero);

I an ovoid is a set of points meeting any maximum totally
isotropic subspace in a single point.

Theorem
A classical group acting on its polar space is non-synchronizing if
and only if there exist either

I an ovoid and a spread; or
I a partition into ovoids.

Despite a lot of attention from finite geometers, we still do not
know which polar spaces possess ovoids and/or spreads. The
study of partitions into ovoids is more recent, partly motivated
by this application to synchronization.
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Almost synchronizing groups

In the examples so far, the maps not synchronized by primitive
groups are uniform: all non-empty inverse images of points of
the domain have the same size. People wondered if this were
necessarily the case, and a permutation group G was said to be
almost synchronizing if it synchronizes all non-uniform maps.
It was conjectured that primitive groups are almost
synchronizing.

The conjecture is false, however. Recently we found
counterexamples with a nice geometric structure. They are the
automorphism groups of the Tutte–Coxeter and Biggs–Smith
graphs, acting on the edge sets of these graphs. (Their line
graphs have many non-uniform endomorphisms, and their
endomorphism monoids have a rich structure worth
investigating.)
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Other connections with semigroups

If you want to read more about synchronization, there is a long
preprint available by João Araújo, Ben Steinberg and me (arXiv
1511.03184).

There are many other questions about semigroups which look
rather similar, and involve relating properties of the
transformation monoid 〈G, a〉 for all maps a in some class with
properties of the permutation group G. I will use what time
remains to describe briefly one such connection.
The semigroup property we are interested in is idempotent
generation; an idempotent is an element t satisfying t2 = t.
It is easy to see that idempotent generation of 〈G, a〉 for all
rank 2 maps a implies that G is primitive on Ω; so we have a
question about primitive permutation groups.
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preprint available by João Araújo, Ben Steinberg and me (arXiv
1511.03184).
There are many other questions about semigroups which look
rather similar, and involve relating properties of the
transformation monoid 〈G, a〉 for all maps a in some class with
properties of the permutation group G. I will use what time
remains to describe briefly one such connection.

The semigroup property we are interested in is idempotent
generation; an idempotent is an element t satisfying t2 = t.
It is easy to see that idempotent generation of 〈G, a〉 for all
rank 2 maps a implies that G is primitive on Ω; so we have a
question about primitive permutation groups.



Other connections with semigroups

If you want to read more about synchronization, there is a long
preprint available by João Araújo, Ben Steinberg and me (arXiv
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preprint available by João Araújo, Ben Steinberg and me (arXiv
1511.03184).
There are many other questions about semigroups which look
rather similar, and involve relating properties of the
transformation monoid 〈G, a〉 for all maps a in some class with
properties of the permutation group G. I will use what time
remains to describe briefly one such connection.
The semigroup property we are interested in is idempotent
generation; an idempotent is an element t satisfying t2 = t.
It is easy to see that idempotent generation of 〈G, a〉 for all
rank 2 maps a implies that G is primitive on Ω; so we have a
question about primitive permutation groups.



Road closures

Given a transitive permutation group G on Ω, an orbital graph
for G on Ω is the graph whose edge set is an orbit of G on
unordered pairs of elements of Ω.

According to an old theorem of Higman, a permutation group
G is primitive if and only if every orbital graph is connected.

Theorem
Let G be a primitive permutation group on Ω. Then 〈G, a〉 is
idempotent-generated for all rank 2 maps a if and only if G has the
following property: for any orbital graph of G, with edge set E, and
any block of imprimitivity B for the action of G on E, the graph with
edge set E \ B is connected.
In other words, thinking of the orbital graph as a road network,
we cannot disconnect it by closing the roads in some block of
imprimitivity for G.
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Non-basic groups

First we observe that a group with the property of the theorem
must be basic. The figure below shows why. There are two
blocks of imprimitivity for the group acting on edges: the
horizontal edges, and the vertical ones.
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If workmen come and dig up all the vertical roads, then it is
impossible to get from one row to another.
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A conjecture

There are two kinds of basic examples for which the road
closure condition fails. The first are a rich and varied class
consisting of primitive groups which have imprimitive normal
subgroups of index 2. The other form a very limited class based
on the geometric phenomenon of triality.

Conjecture

Let G be a basic primitive permutation group. Suppose that G does
not have an imprimitive normal subgroup of index 2, and is not one of
the triality examples just mentioned. Then G has the 2-Hc property.
Hence, for any rank 2 map a, the semigroup 〈G, a〉 \G is
idempotent-generated.
This conjecture has been checked computationally for all
degrees up to 130 and many larger degrees. No
counterexamples have been found.
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