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Example: the Petersen graph

This is the most famous finite graph; a whole book has been
devoted to it.
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I am going to tell you about the most famous infinite graph . . .



Example: the Petersen graph

This is the most famous finite graph; a whole book has been
devoted to it.

�
�
�
�
�
�
�
��
Z

Z
Z
Z

Z
Z
Z�

�
�
�

�
�
�
B
B
B
B
B
B
B
BB�
�
�

S
S
S

����
PPPP

Z
Z

Z
Z
ZZ

�
�
�
�
��

B
B
B
B
B
BB

�
�
�
�
�
��

u u

u

u

u

u u
u u
u

I am going to tell you about the most famous infinite graph . . .



The random graph

The countable random graph is one of the most extraordinary
objects in mathematics.

As well as graph theory and probability, we can turn to set
theory (the Skolem paradox) or number theory (quadratic
reciprocity, Dirichlet’s theorem) for constructions of this object,
logic (ℵ0-categoricity), group theory (simple groups, Cayley
graphs), Ramsey theory (Ramsey classes of structures) or
topological dynamics (extreme amenability) for some of its
properties, and topology (the Urysohn space) for a related
structure.
I will tell you some of its story.
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Graphs and induced subgraphs

A graph consists of a set of vertices and a set of edges joining
pairs of vertices; no loops, multiple edges, or directed edges are
allowed.
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An induced subgraph of a graph consists of a subset of the
vertex set together with all edges contained in the subset. In
other words we are not allowed to delete edges within our
chosen vertex set.
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Rado’s universal graph

In 1964, Richard Rado published a construction of a countable
graph which was universal. This means that every finite or
countable graph occurs as an induced subgraph of Rado’s
graph.



Rado’s construction

The vertex set of Rado’s graph R is the set N of natural
numbers (including 0).

Given two vertices x and y, with x < y, we join x to y if, when y
is written in base 2, its x-th digit is 1 – in other words, if we
write y as a sum of distinct powers of 2, one of these powers is
2x.
Don’t forget that the graph is undirected! Thus

I 0 is joined to all odd numbers;
I 1 is joined to 0 and to all numbers congruent to 2 or 3

(mod 4).
I . . .

Problem
Does R have any non-trivial symmetry? And why is this very special
graph the most famous infinite graph?
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The random graph

Meanwhile, Rado’s fellow Hungarians Paul Erdős and Alfred
Rényi showed the following theorem:

Theorem
There is a countable graph R with the following property: if a random
graph X on a fixed countable vertex set is chosen by selecting edges
independently at random with probability 1

2 , then the probability that
X is isomorphic to R is equal to 1.
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The proof

I will show you the proof.

I claim that one of the distinguishing features of mathematics is
that you can be convinced of such an outrageous claim by some
simple reasoning. I do not believe this could happen in any
other subject.
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Property (∗)
The proof depends on the following property, which a graph
may or may not possess:
(∗) Given two finite disjoint sets U and V of vertices, there is a

vertex z which is joined to every vertex in U and to no
vertex in V.
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The point z is called a witness for the sets U and V.
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Outline of the proof

I will prove:

Fact 1. With probability 1, a random countable graph satisfies (∗).
Fact 2. Any two countable graphs satisfying (∗) are isomorphic.

Then you will be convinced!
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Proof of Fact 1

We use from measure theory the fact that a countable union of
null sets is null. We are trying to show that a countable graph
fails (∗) with probability 0; since there are only countably many
choices for the (finite disjoint) sets U and V, it suffices to show
that for a fixed choice of U and V the probability that no
witness z exists is 0.

Suppose that |U ∪V| = n. Then the probability that a given
vertex z is not the required witness is 1− 1

2n .
Since all edges are independent, the probability that none of
z1, z2, . . . , zN is the required witness is

(
1− 1

2n

)N
, which tends to

0 as N → ∞.
So the event that no witness exists has probability 0, as
required.
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Proof of Fact 2

We use a method known to logicians as “back and forth”.
Suppose that Γ1 and Γ2 are countable graphs satisfying (∗):
enumerate their vertex sets as (a0, a1, . . .) and (b0, b1, . . .). We
build an isomorphism φ between them in stages.
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At stage 0, map a0 to b0.
At even-numbered stages, let am the first unmapped ai. Let U′

and V′ be its neighbours and non-neighbours among the
vertices alreay mapped, and let U and V be their images under
φ. Use (∗) in graph Γ2 to find a witness v for U and V. Then
map am to z.
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Fact 2, continued

At odd-numbered stages, go in the other direction, using (∗) in
Γ1 to choose a pre-image of the first unmapped vertex in Γ2.

This approach guarantees that every vertex of Γ1 occurs in the
domain, and every vertex of Γ2 in the range, of φ; so we have
constructed an isomorphism.
The proof is finished. This is a fine example of a
non-constructive existence proof: if almost all graphs have the
property, then certainly a graph with the property exists. Erdős
and Rényi didn’t bother with an explicit construction.
Had we only gone “forward”, we would only use property (∗)
in Γ2, and we would have constructed an embedding, but could
not guarantee that it is onto.
The back-and-forth method is often credited to Georg Cantor,
but it seems that he never used it, and it was invented later by
E. V. Huntington.
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Properties of R

Recall that a countable graph Γ is universal if every finite or
countable graph can be embedded into Γ as induced subgraph.

Fact 3. R is universal (for finite and countable graphs).

To see this, revisit the back-and-forth “machine” but use it only
in the forward direction. As we saw, this only requires (∗) to
hold in Γ2, and delivers an embedding of Γ1 in Γ2.

A graph Γ is homogeneous if every isomorphism between finite
induced subgraphs of Γ can be extended to an automorphism
of Γ. (This is a very strong symmetry condition.)

Fact 4. R is homogeneous.

To see this, take Γ1 = Γ2 = R, and start the back-and-forth
machine from the given finite isomorphism.
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Fact 4. R is homogeneous.

To see this, take Γ1 = Γ2 = R, and start the back-and-forth
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Randomness and symmetry

The fact that the random graph is highly symmetric is
surprising, for several reasons.

First, for finite graphs, the more symmetric a graph, the smaller
its probability of occurrence:

Graph q qq�� TT q qq�� TT q qq q qq
Symmetries 6 2 2 6
Probability 1

8
3
8

3
8

1
8

In fact, the probability of any non-trivial symmetry tends
rapidly to 0 as the number of vertices increases.
Indeed, the theorem of Erdős and Rényi was a short appendix
to a long paper showing that most finite graphs are “as far from
symmetry” as possible.
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Second, recall the definition of Rado’s graph R:
I Vertex set N

I For x < y, x and y joined if the x-th binary digit of y is 1.

I mentioned the problem of finding a non-trivial symmetry of
this graph. There seems to be no simple formula for one!
Rado’s graph is indeed an example of the random graph. To
prove this, all we have to do is to verify condition (∗). This is a
straightforward exercise.
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A number-theoretic construction

Since the prime numbers are “random”, we should be able to
use them to construct the random graph. Here’s how.

Recall that, if p is an odd prime not dividing a, then a is a
quadratic residue (mod p) if the congruence a ≡ x2 (mod p)
has a solution, and a quadratic non-residue otherwise. A
special case of the law of quadratic reciprocity, due to Gauss,
asserts that if the primes p and q are congruent to 1 (mod 4),
then p is a quadratic residue (mod q) if and only if q is a
quadratic residue (mod p).
So we can construct a graph whose vertices are all the prime
numbers congruent to 1 (mod 4), with p and q joined if and
only if p is a quadratic residue (mod q): the law of quadratic
reciprocity guarantees that the edges are undirected.
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This graph is isomorphic to the random graph!

To show this we have to verify condition (∗). So let U and V be
finite disjoint sets of primes congruent to 1 (mod 4). For each
ui ∈ U let ai be a fixed quadratic residue (mod ui); for each
vj ∈ V, let bj be a fixed quadratic non-residue mod vj.
By the Chinese Remainder Theorem, the simultaneous
congruences

I z ≡ ai (mod ui) for all ui ∈ U,
I z ≡ bj (mod vj) for all vj ∈ V,
I z ≡ 1 (mod 4),

have a solution modulo 4 ∏ ui ∏ vj. By Dirichlet’s Theorem, this
congruence class contains a prime, which is the required
witness.
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The Skolem paradox

The downward Löwenheim–Skolem theorem of model theory
says that a consistent theory in a countable first-order language
has a countable model.

The Skolem paradox is this: There is a theorem of set theory
(for example, as axiomatised by the Zermelo–Fraenkel axioms)
which asserts the existence of uncountable sets. Assuming that
ZF is consistent (as we all believe!), how can this theory have a
countable model?
My point here is not to resolve this paradox, but to use it
constructively.
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A set-theoretic construction

Let M be a countable model of the Zermelo–Fraenkel axioms
for set theory. Then M consists of a collection of things called
“sets”, with a single binary relation ∈, the “membership
relation”.

Form a graph on the set M by joining x and y if either x ∈ y or
y ∈ x.
This graph turns out to be the random graph!
Indeed, the precise form of the axioms is not so important. We
need a few basic axioms (Empty Set, Pairing, Union) and,
crucially, the Axiom of Foundation, and that is all. It does not
matter, for example, whether or not the Axiom of Choice holds.
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Back to Rado’s graph

In the set-theoretic construction, it doesn’t matter whether the
axiom of infinity holds or not.

There is a simple description of a model of set theory in which
the negation of the axiom of infinity holds (called hereditarily
finite set theory). We represent sets by natural numbers. We
encode a finite set {a1, . . . , ar} of natural numbers by the
natural number 2a1 + · · ·+ 2ar . (So, for example, 0 encodes the
empty set.)
When we apply the construction of “symmetrising the
membership relation” to this model, we obtain Rado’s
description of his graph!
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Rolling back the years, 1

In fact, fifteen years earlier, Roland Fraı̈ssé had asked the
question: which homogeneous relational structures exist?

Fraı̈ssé defined the age of a relational structure M to be the
class Age(M) of all finite structures embeddable in M (as
induced substructure). In terms of this notion, he gave a
necessary and sufficient condition.
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Fräıssé classes and Fräıssé limits

Theorem
A class C of finite structures is the age of a countable homogeneous
relational structure M if and only if

I C is closed under isomorphism;
I C is closed under taking induced substructures;
I C contains only countably many non-isomorphic structures;
I C has the amalgamation property (see next slide).

If these conditions hold, then M is unique up to isomorphism.
A class C satisfying these conditions is a Fraı̈ssé class, and the
countable homogeneous structure M is its Fraı̈ssé limit.
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Fräıssé classes and Fräıssé limits
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countable homogeneous structure M is its Fraı̈ssé limit.
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The amalgamation property

The amalgamation property says that two structures B1, B2 in
the class C which have substructures isomorphic to A can be
“glued together” along A inside a structure C ∈ C:
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Note that the intersection of B1 and B2 may be larger than A.
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Examples

Each of the following classes is a Fraı̈ssé class; the proofs are
exercises. Thus the corresponding universal homogeneous
Fraı̈ssé limits exist.

Fraı̈ssé class Fraı̈ssé limit
Graphs Rado’s graph
Triangle-free graphs Henson’s graph
Graphs with bipartition Generic bipartite graph
Total orders (Q, <)
Partial orders Generic poset
Permutation patterns Generic biorder

There are many others!
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exercises. Thus the corresponding universal homogeneous
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Rolling back further

A quarter of a century earlier, these ideas had already been
used by the Soviet mathematician P. S. Urysohn. He visited
western Europe with Aleksandrov, talked to Hilbert, Hausdorff
and Brouwer, and was drowned while swimming in the sea at
Batz-sur-Mer in south-west France at the age of 26 in 1924.

Among his many contributions to topology was the theorem
discussed below. The paper was completed from Urysohn’s
unpublished work by Aleksandrov and published in 1926.
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Urysohn’s theorem

A Polish space is a metric space which is complete (Cauchy
sequences converge) and separable (there is a countable dense
set). A metric space M is homogeneous if any isometry
between finite subspaces extends to an isometry of M.

Theorem
There exists a homogeneous Polish space containing a copy of every
finite metric space, and it is unique up to isometry.
This unique metric space is known as the Urysohn space. Its
study has been popularised in recent years by Anatoly Vershik.
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The proof

Here, in modern terminology, is what Urysohn did.

We cannot apply Fraı̈ssé’s Theorem directly to obtain this
result, since there are uncountably many 2-element metric
spaces up to isometry (one for each positive real number).
Instead, use the class of finite rational metric spaces (those with
all distances rational). This is a Fraı̈ssé class, whose Fraı̈ssé
limit is a countable universal homogeneous rational metric
space.
Its completion is easily seen to be the required Polish space.
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Related constructions

Various other types of metric spaces form Fraı̈ssé classes. These
include

I The class of integral metric spaces, those with all distances
integers. The Fraı̈ssé limit is a kind of universal
distance-transitive graph.

I The class of metric spaces with all distances 1 or 2. The
Fraı̈ssé limit is the random graph!

Let M be the Fraı̈ssé limit of the class of metric spaces with all
distances 1 or 2; form a graph by joining two points if their
distance is 1. Since the graph is homogeneous, if v and w are
two vertices at distance 2, there is a vertex at distance 1 from
both. Thus the distance in M coincides with the graph distance
in this graph. The graph is universal and homogeneous, and so
is R.
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integers. The Fraı̈ssé limit is a kind of universal
distance-transitive graph.

I The class of metric spaces with all distances 1 or 2. The
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Reversing the arrows

A category theorist, looking at Fraı̈ssé’s construction, would
draw a commutative diagram, with arrows representing
embeddings.

She would then ask for a similar theorem, with the arrows
reversed, and representing projections.
There is such a theorem, the projective Fraı̈ssé theorem. Rather
than describe it in detail, I will give you one application.



Reversing the arrows

A category theorist, looking at Fraı̈ssé’s construction, would
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Cantor space

The famous Cantor set is given by the middle third
construction, starting with the unit interval, and successively
removing the middle third from each interval.

It consists of the real numbers in the unit interval whose base 3
representation involves 0s and 2s only.
Topologically, it is homeomorphic to a product of countably
many copies of a 2-element discrete space, and hence it is
compact and totally disconnected.
If we replace 0 and 2 in base 3 by 0 and 1 in base 2, we make a
huge difference to the topology: we now get the unit interval,
which is connected. This change occurs because a few real
numbers have two base 2 representations, and so the map from
Cantor space to the unit interval is not quite one-to-one.
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The pseudo-arc

What does a typical closed connected subset of the unit square look
like?

We have to be careful about the word “typical”. In a probability
space this can mean “a set of measure 1”, but here we don’t
have a measure. Instead we use a notion from Baire category:
in a complete metric space, a set is residual if it contains a
countable intersection of open dense subsets. Residual sets
behave like complements of null sets: they are non-empty, meet
every open set, and any two (or countably many) of them
intersect in a residual set.
The metric we use on closed subsets of the square is Hausdorff
metric: two sets are within distance ε if every point of one is
within distance ε from some point of the other.
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Now it turns out that there is a space P such that, in the set of
closed connected subsets of the unit square with the Hausdorff
metric, the elements homeomorphic to P form a residual set.

The space P is the pseudo-arc.
Several different constructions were given (the first by Knaster
in 1922), but R. H. Bing showed that they all produced the same
object, and that the homeomorphism group of P acts
transitively on its points.
Moreover, the statement in the first paragraph remains true if
we replace the unit square by the unit hypercube in Rn for any
n ≥ 2, or in Hilbert space.
Its topological definition might suggest that it cannot be
constructed by discrete methods, but this is not so . . .
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. . . as projective Fräıssé limit (almost)

Consider the class P of reflexive paths, graphs which consist of
a finite path with a loop at each vertex. Irwin and Solecki show
that P is a projective Fraı̈ssé class, so has a projective Fraı̈ssé
limit P.

Thus P has the structure of a graph and the topology of the
Cantor set.
They show further that the graph structure on P consists of
isolated vertices and edges (with loops) only; thus, an
equivalence relation with all equivalence classes of size 1 or 2.
Taking the quotient of P by this equivalence relation gives the
pseudo-arc P.
The last step mirrors the step from Cantor space to the unit
interval.
Using this, Solecki and Tsankov were able to give a new proof
of Bing’s theorem that the pseudo-arc has a transitive
homeomorphism group.
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limit P.
Thus P has the structure of a graph and the topology of the
Cantor set.
They show further that the graph structure on P consists of
isolated vertices and edges (with loops) only; thus, an
equivalence relation with all equivalence classes of size 1 or 2.
Taking the quotient of P by this equivalence relation gives the
pseudo-arc P.
The last step mirrors the step from Cantor space to the unit
interval.

Using this, Solecki and Tsankov were able to give a new proof
of Bing’s theorem that the pseudo-arc has a transitive
homeomorphism group.



. . . as projective Fräıssé limit (almost)
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