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Universal circular sequences

De Bruijn graphs were introduced to solve the following
problem:

Question
Given n and k, how can we create a cyclic arrangement of length nk of
the letters from an alphabet of size n, with the property that each
k-tuple of letters from the alphabet occurs just once in consecutive
positions in the cycle?
We will take the alphabet to be {0, 1, . . . , n− 1}.
For example, for n = 3 and k = 2, the sequence

(0, 0, 1, 1, 2, 0, 2, 2, 1)

has the required property.



De Bruijn graphs

The de Bruijn graph G(n, m) is defined as follows:
I the vertices are all m-tuples of elements from the alphabet

A of cardinality n;
I there is a directed arc labelled a0a1 . . . am−1am from the

vertex a0a1 . . . am−1 to vertex a1 . . . am−1am.
Each vertex of the graph has n arcs leaving it and n arcs
entering it.
Since the graph is connected, it has a closed directed Eulerian
trail. Reading around the trail gives the required circular
sequence (with k = m + 1), since each k-tuple labels a unique
edge and occurs once in the cycle.



Digression: a harder problem

This example is an experimental design problem from R. E. L.
Aldred, R. A. Bailey, Brendan D. McKay and Ian M. Wanless,
Circular designs balanced for neighbours at distances one and
two, Biometrika 101 (2014), 943–956.
What if we want each ordered pair to occur once at distance 1
and once at distance 2 in the cycle?
It is easily checked that no such cycle exists for n ≤ 4. The
authors conjecture that it is true for all n ≥ 5 and prove this in
many special cases, including n ≤ 1000.
The authors show that this is equivalent to constructing an
Eulerian quasigroup of order n for each n ≥ 5 (next slide).

Question
Does there exist an Eulerian quasigroup of any order n ≥ 5?



Eulerian quasigroups
A quasigroup is an algebraic structure with a binary operation
so that left division and right division are unique.
Given a quasigroup Q of order n, and two elements a0, a1 ∈ Q,
form a Fibonacci sequence over Q by the rule that
am ◦ am+1 = am+2 for m ≥ 0. We say that the quasigroup is
Eulerian if this sequence first returns to its starting point after
n2 steps.
Here is an example with n = 5.

◦ 0 1 2 3 4
0 1 0 2 3 4
1 2 3 1 4 0
2 3 4 0 2 1
3 0 2 4 1 3
4 4 1 3 0 2

(1, 1, 3, 4, 3, 0, 0, 1, 0, 2, 2, 0, 3, 3, 1, 2, 1, 4, 0, 4, 4, 2, 3, 2, 4)



An example

Back to the de Bruijn graphs. We can save space by labelling the
arc from a0 . . . am−1 to a1 . . . am just by the new symbol am added.
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The picture shows the de Bruijn graph G(2, 3).



De Bruijn graphs as automata

A finite deterministic automaton is a machine M which has a
finite set Q of internal states and reads symbols from a finite
input alphabet A. It is described by a transition function
π : Q×A→ Q, so that when the machine is in state q and
reads a symbol a, it moves to state π(q, a).
An automaton can be represented by a finite edge-labelled
directed graph, whose vertex set is Q, with arcs labelled by A;
an edge q→ r with label a indicates that π(q, a) = r. A digraph
represents an automaton if and only if each vertex has a unique
edge with each possible label leaving it.
Thus, the de Bruijn graph G(n, m) represents an automaton
whose state set is Am and alphabet A, where |A| = n.



Synchronization

Am automaton is synchronizing if there is a string w of
symbols in the alphabet A such that, after reading the symbols
in A, the machine is in a state depending only on w and not on
the initial state. Such a sequence is called a reset word.
The de Bruijn graph G(n, m) represents an automaton with a
very strong version of the synchronization property: every
word of length m is a reset word. After reading the word w of
length m, the automaton is in the state labelled w.
We say that an automaton with this property is synchronizing
at level m.



Core synchronizing automata

Let M be an automaton which is synchronizing at level m.
There is a map s : Am → Q such that, after reading a string w,
the machine is in state s(w). Let Q′ be the image of s. Then
(Q′, A, π|Q′×A) is an automaton, called the core of M, and
written K(M).
We can think of the states in Q′ as being recurrent, the others as
being transient.
We say that an automaton M which is synchronizing at level m
is a core automaton if M = K(M).
A de Bruijn graph G(n, m) represents a core automaton.



Foldings of automata

A folding of an automaton is an equivalence relation ≡ on the
set Q of states having the property that, if q ≡ q′ and a is any
symbol in A, then π(q, a) ≡ π(q′, a).
If ≡ is a folding of M, there is a quotient automaton M/≡
whose states are the ≡-classes on Q, with an arc [q]→ [r] with
label a if π(q′, a) ∈ [r] for any q′ ∈ [q], where [q] denotes the
≡-class containing q.



De Bruijn graphs are universal

Theorem
Let A be an automaton over an alphabet A of length n. Then the
following are equivalent:

I A is synchronizing at level m, and is core;
I A is a folding of G(n, m).

The reverse direction is clear. For the forward direction, let
s : Am → Q be the map defined earlier. Since M is core, s is
onto. Define a relation ≡ on the vertex set of G(n, m) by the rule
that w ≡ w′ if s(w) = s(w′). Then verify that ≡ is a folding, and
A is isomorphic to the quotient G(n, m)/≡.



Universal algebra formulation

An automaton with alphabet A of size n can be regarded as an
algebra on the set of states, n unary operations ν0, . . . , µn−1,
where qνi = π(q, i) for all q, i.
Automata which are synchronizing at level m form a variety,
defined by the laws

qνi0 · · · νim−1 = rνi0 · · · νim−1

for all q, r ∈ Q and i0, . . . , im−1 ∈ A.
The core of the free 1-generator algebra in this variety is the de
Bruijn graph G(n, m).



Counting

“I count a lot of things that there’s no need to count,”
Cameron said. “Just because that’s the way I am. But I
count all the things that need to be counted.”

Richard Brautigan, The Hawkline Monster: A Gothic Western



Counting foldings

Let F(n, m) be the number of foldings of the de Bruijn graph
G(n, m).

Question
Calculate the function F(n, m).
By our previous comments, F(n, m) is the number of n-state
automata which are synchronizing at level m and are core.
It is clear that F(n, 1) is the Bell number B(n). For in this case
the vertices are indexed by symbols from the alphabet A; and,
given an arbitrary partition of A, any arc labelled a ends in the
part containing a.
We found a formula for F(n, 2). Beyond this, only finitely many
values are currently known (by brute force computation): for
example, F(2, 3) = 30, F(2, 4) = 1247.



A formula for F(n, 2)

Theorem
The number of foldings of the de Bruijn graph with word length 2
over an alphabet of cardinality n is

∑
π

|π|

∏
i=1

R(|π|, |Ai|),

where π runs over partitions of the alphabet, Ai is the ith part, and

R(s, t) = ∑
π

(−1)|π|−1(|π| − 1)!
|π|

∏
i=1

B(|Ai|s),

where π runs over all partitions of {1, . . . , t}, and Ai is the ith part.
The numbers for n = 1, . . . , 7 are 1, 5, 192, 78721, 519338423,
82833228599906, 429768478195109381814.



Sketch proof

We define a graph Γ associated with a folding: the vertex set is
the alphabet A, and two vertices x and y are joined if there exist
u and v such that ux ≡ vy.
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Let π be the partition of A into connected components of the
graph Γ. If Ai is a part of Γ, then the set A×Ai (the horizontal
stripe in the figure) is a union of parts of the folding: no part
can cross into a different horizontal stripe.
Moreover, by the definition of a folding, we see that if x, y ∈ Ai,
then xw and yw lie in the same part of the folding.

r r rxw
zw

yw

Ai



The sets A×Ai can be treated independently, so we have to
count the number of good partitions of each and multiply them.
Moreover, by the last remark, we can shrink each horizontal
interval Aj × {v} to a point, so we have to partition π ×Ai.
There are B(|π| · |Ai|) partitions of π ×Ai. We have to filter out
the ones which do not induce partitions of π× B for any proper
subset B of Ai. By Möbius inversion over the lattice of
partitions of Ai, we find that the number of these is R(|π|, |Ai|),
where R is as defined earlier.
Putting all this together gives the result.



Automorphisms
Any permutation of the alphabet induces an automorphism of
the de Bruijn graph (ignoring edge labels). This may induce an
automorphism of a quotient of the graph by a folding (if it
preserves the folding).

Theorem
The automorphism group of G(n, m) (ignoring labels) is the
symmetric group Sn.

Theorem
A folded de Bruijn graph over the 2-letter alphabet {0, 1} has at most
two automorphisms; if there are two, then they are induced by
interchanging the alphabet letters.
This depends on a result of interest in its own right:

Lemma
Suppose that a folding of G(n, 2) has the property that two vertices
whose labels end with different letters are equivalent. Then there is
just a single equivalence class.



Sketch proof

Let G be a folding of G(2, m). Assume G has more than one
vertex. Then two labels for the same vertex must end in the
same letter, by the lemma. Also, using induction, we may
assume the result for foldings of G(2, m− 1).
Write v ∼ w if the two out-neighbours of v and w are the same.
By the lemma, two labels for the same vertex end with the same
letter; so edges with a given label leaving equivalent vertices
arrive at the same vertex. So ∼ is a folding. Vertices agreeing
except in the first letter are equivalent; so G/ ∼ is
synchronizing at level m− 1.
A graph automorphism g of G induces an automorphism ḡ of
G/∼ which (by induction) is induced by a permutation of the
alphabet. If ḡ is trivial, then g fixes the vertex with label 00 . . . 0;
considering a vertex moved by ḡ whose distance from 00 . . . 0 is
minimal, we reach a contradiction.
The other case is similar.



Transducers

The reason for our interest in foldings of de Bruijn graphs is
that they are connected with interesting infinite groups, such as
the outer automorphism groups of the finitely-presented
Higman–Thompson simple groups, and the automorphism
group of the shift dynamical system.
There is only time for a very brief sketch.
A transducer is an automaton with the extra ability that it can
write strings from the alphabet A; that is, it has also an output
function λ : Q×A→ A∗, where A∗ is the set of finite strings
over A; if the machine is in state q and reads a, it writes λ(q, a).
We always assume that the transducer cannot read infinitely many
symbols without writing something. Equivalently, going round a
cycle in the graph of the automaton results in some output
being produced.



Maps of Cantor space

Let Aω be the set of infinite sequences over A. We give Aω the
Tychonov product topology induced from the discrete topology
on A.
From our above assumption, an initialised transducer Mq, that
is, a transducer M which starts in state q, induces a map from
Aω to itself. It is easy to see that this map is continuous. Since
Aω is compact, if the map is invertible then it is a
homeomorphism.
Maps of Cantor space induced by transducers which are
synchronizing at some finite level, and whose inverses are also
induced by transducers synchronizing at a finite level, are
closely connected with automorphisms of the
Higman–Thompson groups Gn,r.



Other groups

Many interesting groups can be defined as groups of maps of
Cantor space induced by transducers of various types. The
largest such group is the rational group of Grigorchuk,
Nekrashevych, and Suschanskiı̆. We can restrict the to be
synchronous (that is, they write one output symbol for each
input symbol read), or synchronizing at some finite level, or
having some “preliminary” states outside the core.
We hope that counting foldings will give group-theoretic
information about some of these groups.
I refer the interested reader to our paper, arXiv 1605.09302.


