Permutation Groups and Transformation Semigroups Lecture 1: Introduction

Peter J. Cameron University of St Andrews

Shanghai Jiao Tong University 14 November 2017

Permutation groups

For any set Ω , Sym(Ω) denotes the symmetric group of all permutations of Ω , with the operation of composition. If $|\Omega| = n$, we write Sym(Ω) as S_n . We write permutations to the right of their argument, and compose from left to right: that is, αg is the image of $\alpha \in \Omega$ under the permutation $g \in \text{Sym}(\Omega)$, and

$$\alpha(g_1g_2)=(\alpha g_1)g_2.$$

A permutation group on Ω is a subgroup of Sym(Ω). An action of a group *G* on Ω is a homomorphism from *G* to Sym(Ω); its image is a permutation group on Ω . Whenever we define a property of a permutation group, we use the name for a property of the group action.

An example

Let *G* be the group of automorphisms of the cube, acting on the set Ω of vertices, edges and faces of the cube: $|\Omega| = 26$. The action is faithful, so *G* is a permutation group. Automorphism groups of mathematical objects provide a rich supply of permutation groups. These objects can be of almost any kind.

Orbits and transitivity

Let *G* be a permutation group on Ω . Define a relation \sim on Ω by the rule

 $\alpha \sim \beta$ if and only if there exists $g \in G$ such that $\alpha g = \beta$.

 \sim is an equivalence relation on Ω . (The reflexive, symmetric and transitive laws correspond to the identity, inverse, and closure properties of *G*.)

The equivalence classes are called **orbits**; the group *G* is **transitive** if there is just one orbit. Thus, a permutation group has a transitive action on each of its orbits.

In the example, there are three orbits: the 8 vertices, the 12 edges, and the 6 faces.

Another way to say this

There is another way to describe transitivity, which will be useful for further properties.

We say that a mathematical structure built on the set Ω is trivial if it is invariant under Sym (Ω) , and non-trivial otherwise. Thus,

- a subset of Ω is trivial if and only if it is either Ω or the empty set;
- a partition of Ω is trivial if and only if either it has a single part, or all parts are singletons (sets of size 1);
- a simple graph on Ω is trivial if and only if it is either the complete graph or the null graph.

So we can say:

A permutation group G on Ω is transitive if and only if there are no non-trivial G-invariant subsets.

Transitive actions

Let *G* act on Ω , and take $\alpha \in \Omega$. The stabiliser of α in *G* is the set

$$\{g\in G: \alpha g=\alpha\}.$$

It is a subgroup of *G*.

If *H* is any subgroup of *G*, the (right) coset space of *H* in *G* is the set G : H of right cosets Hx of *H* in *G*. There is a transitive action of *G* on G : H, given by the rule

$$(Hx)g = H(xg).$$

Now there is a notion of isomorphism of group actions, and the following theorem holds:

Theorem

- Any transitive action of G on Ω is isomorphic to the action of G on the coset space G : G_α, for α ∈ Ω.
- ► The actions of G on coset spaces G : H and G : K are isomorphic if and only if H and K are conjugate subgroups of G.

Regular permutation groups and Cayley's Theorem

A permutation group *G* is regular on Ω if it is transitive and the stabiliser of a point is the identity subgroup. The right cosets of the identity are naturally in bijection with the elements of *G*. So we can identify Ω with *G* so that the action of *G* is on itself by right multiplication. Thus we have Cayley's Theorem:

Theorem

Every group of order n is isomorphic to a subgroup of S_n .

In particular we see that asking a group G to be a transitive permutation group is no restriction on the abstract structure of G.

Primitivity

A transitive permutation group G on Ω is primitive if the only non-trivial G-invariant partitions are the trivial ones (the partition with one part and the partition into singletons). This can be said another way. A block of imprimitivity is a subset B of Ω with the property that, for all $g \in G$, either Bg = Bor $Bg \cap B = \emptyset$. Then G is primitive if and only if the only blocks of imprimitivity are Ω , singletons, and the empty set.. Consider our example G, in its transitive action on the vertices of the cube. We see that G is imprimitive; indeed it preserves two non-trivial partitions:

- the partition into pairs of antipodal points (opposite ends of long diagonals;
- the partition into the vertex sets of two interlocking tetrahedra.

Primitive groups

Theorem

- Let G be a transitive permutation group on Ω, where |Ω| > 1. Then G is primitive if and only if the stabiliser of a point of Ω is a maximal proper subgroup of G.
- Let G be primitive on Ω. Then every non-trivial normal subgroup of G is transitive.
- Let G be primitive on Ω. Then G has at most two minimal normal subgroups; if there are two, then they are isomorphic and non-abelian, and each of them acts regularly.

The last part shows that, unlike for transitivity, not every group is isomorphic to a primitive permutation group.

Basic groups

A Cartesian structure on Ω is an identification of Ω with A^d . where A is some set. We can regard A as an "alphabet", and A^d as the set of all words of length d over the alphabet A. Then A^d is a metric space, with the Hamming metric (used in the theory of error-correcting codes): the distance between two words is the number of positions in which they differ. A Cartesian structure is non-trivial if |A| > 1 and d > 1. Let *G* be a primitive permutation group on Ω . We say that *G* is basic if it preserves no non-trivial Cartesian structure on Ω . Although this concept is only defined for primitive groups, we see that the imprimitive group we met earlier, the symmetry group of the cube acting on the vertices, does preserve a Cartesian structure. The automorphism group of a Cartesian structure over an alphabet of size 2 is necessarily imprimitive generalise our argument for the cube to see this.

The O'Nan–Scott Theorem

A permutation group *G* is called

- affine if it acts on a vector space V and its elements are products of translations and invertible linear transformations of V, so that G contains all the translations;
- ► almost simple if T ≤ G ≤ Aut(T), where T is a non-abelian finite simple group, and Aut(T) its automorphism group (where T embeds into Aut(T) as the group of inner automorphisms or conjugations).

I won't define diagonal groups; here's an example. Let *T* be a finite simple group. Then $T \times T$, acting on *T* by the rule

$$x(g,h) = g^{-1}xh$$
 for all $x, g, h \in G$,

is a diagonal group. (The stabiliser of the identity is the diagonal subgroup $\{(g,g) : g \in G\}$ of $G \times G$.)

Theorem

Let G be a finite basic primitive permutation group. Then G is affine, diagonal, or almost simple.

Multiple transitivity

If *G* acts on Ω , then it has induced actions on the set of *t*-element subsets of Ω , or the set of *t*-tuples of distinct elements of Ω , where $t \leq |\Omega|$.

We say that *G* is *t*-homogeneous if the first action above is transitive, and *t*-transitive if the second is.

A *t*-transitive group is *t*-homogeneous. The symmetric group S_n is *t*-transitive for all $t \le n$, while the alternating group A_n is *t*-transitive for $t \le n - 2$.

A 2-homogeneous group is primitive. (Exercise; proof later.) For t = 2, these properties have graph-theoretic interpretations:

- G is 2-homogeneous if there are no non-trivial G-invariant undirected graphs on Ω;
- G is 2-transitive if and only if there are no non-trivial G-invariant directed graphs on Ω.

The Classification of Finite Simple Groups

A non-identity group is simple if its only normal subgroups are itself and the identity subgroup.

The Classification of Finite Simple Groups, or CFSG, does what its name suggests:

Theorem

A finite simple group is one of the following:

- ► a cyclic group of prime order;
- an alternating group A_n , for $n \ge 5$;
- a group of Lie type;
- one of 26 sporadic groups.

This theorem has revolutionised finite permutation group theory. I will end with one of its consequences.

Multiply transitive groups

Theorem (CFSG)

All finite 2-transitive groups are explicitly known.

Corollary (CFSG)

The only finite 6*-transitive groups are the symmetric and alternating groups.*

Indeed, there are only two 5-transitive groups which are not symmetric or alternating, the Mathieu groups M_{12} and M_{24} ; and only two further 4-transitive groups, the Mathieu groups M_{11} and M_{23} .

Transformation semigroups

We recall the definitions.

► A semigroup is a set *S* with a binary operation \circ satisfying the *associative law*:

$$a \circ (b \circ c) = (a \circ b) \circ c$$

for all $a, b, c \in S$.

 A monoid is a semigroup with an *identity* 1, an element satisfying

$$a \circ 1 = 1 \circ a = a$$

for all $a \in S$.

► A group is a monoid with *inverses*, that is, for all *a* ∈ *S* there exists *b* ∈ *S* such that

$$a \circ b = b \circ a = 1.$$

From now on we will write the operation as *juxtaposition*, that is, write *ab* instead of $a \circ b$, and a^{-1} for the inverse of *a*.

Mind the gap between semigroups and groups!

To any semigroup we can add an identity to produce a monoid of size one larger. Nothing like this is possible for groups!

Order	1	2	3	4	5	6	7	8
Groups	1	1	1	2	1	2	1	5
Monoids	1	2	7	35	228	2237	31559	1668997
Semigroups	1	5	24	188	1915	28634	1627672	3684030417

Note that the numbers of *n*-element semigroups and (n + 1)-element monoids are fairly close; this is because we can add an identity to an *n*-element semigroup to form an (n + 1)-element monoid. But numbers of groups are much smaller; the group axioms are much tighter!

Two analogues of $Sym(\Omega)$

For a set Ω , let $T(\Omega)$ be the set of all the maps from Ω to itself, with the operation of composition. If $|\Omega| = n$, we write $T(\Omega)$ as T_n . Note that $T(\Omega)$ is a monoid; it contains $Sym(\Omega)$, and $T(\Omega) \setminus Sym(\Omega)$ is a semigroup. $T(\Omega)$ is the full transformation semigroup on Ω . The order of T_n is n^n .

Also let $I(\Omega)$ denote the set of all partial bijections on Ω (bijections between subsets of Ω), with composition 'where possible': if f_i has domain A_i for i = 1, 2, then f_1f_2 has domain $(A_1f_1 \cap A_2)f_1^{-1}$ and range $(A_1f_1 \cap A_2)f_2$. Again, if $|\Omega| = n$, we write I_n . This is the symmetric inverse semigroup.

The order of I_n is $\sum_{k=0}^n {\binom{n}{k}}^2 k!$; there is no closed form for this

expression.

Regularity

An element *a* of a semigroup *S* is regular if there exists $x \in S$ such that axa = a. The semigroup *S* is regular if all its elements are regular. Note that a group is regular, since we may choose $x = a^{-1}$. The semigroup T_n is regular (exercise). Regularity is equivalent to a condition which appears formally to be stronger:

Proposition

If $a \in S$ is regular, then there exists $b \in S$ such that aba = a and bab = b.

Proof.

Choose *x* such that axa = a, and set b = xax. Then

$$aba = axaxa = axa = a,$$

 $bab = xaxaxax = xaxax = xax = b.$

Idempotents

An idempotent in a semigroup *S* is an element *e* such that $e^2 = e$. Note that, if axa = a, then ax and xa are idempotents. In a group, there is a unique idempotent, the identity. By contrast, it is possible for a non-trivial semigroup to be generated by its idempotents.

Proposition

Let S be a finite semigroup, and $a \in S$ *. Then some power of a is an idempotent.*

Proof.

Since *S* is finite, the powers of *a* are not all distinct: suppose that $a^m = a^{m+r}$ for some m, r > 0. Then $a^i = a^{i+tr}$ for all $i \ge m$ and $t \ge 1$; choosing *i* to be a multiple of *r* which is at least *m*, we see that $a^i = a^{2i}$, so a^i is an idempotent.

It follows that a finite monoid with a unique idempotent is a group. For the unique idempotent is the identity; and, if $a^i = 1$, then *a* has an inverse, namely a^{i-1} .

The semigroup *S* is an inverse semigroup if for each $a \in S$ there exists a unique $b \in S$ such that aba = a and bab = b. We say that *b* is the (von Neumann) inverse of *a*.

The symmetric inverse semigroup $I(\Omega)$ is an inverse semigroup.

In an inverse semigroup, the idempotents commute, and they form a semilattice under the order relation $e \le f$ if ef = fe = f. In $I(\Omega)$, the semilattice of idempotents is isomorphic to the Boolean lattice of all subsets of Ω .

Analogues of Cayley's Theorem

Theorem

An *n*-element semigroup is isomorphic to a sub-semigroup of T_{n+1} .

In Cayley's theorem, we let the group act as the group of right multiplications of itself. For a semigroup, this action may not be faithful. So first we add an identity *e* to form a monoid. Now ea = eb implies a = b and all is well. A similar but slightly harder theorem holds for inverse

semigroups:

Theorem (Vagner–Preston Theorem)

An *n*-element inverse semigroup is isomorphic to a sub-semigroup of I_n .

Basics of transformation semigroups Any map $f: \Omega \rightarrow \Omega$ has an image

$$\operatorname{Im}(f) = \{xf : x \in \Omega\},\$$

and a kernel, the equivalence relation \equiv_f defined by

$$x \equiv_f y \Leftrightarrow xf = yf,$$

or the corresponding partition of Ω . (We usually refer to the partition when we speak about the kernel of f, which is denoted Ker(f).) The rank rank(f) of f is the cardinality of the image, or the number of parts of the kernel. Under composition, we clearly have

 $\operatorname{rank}(f_1f_2) \leq \min\{\operatorname{rank}(f_1), \operatorname{rank}(f_2)\},\$

and so the set $S_m = \{f \in S : \operatorname{rank}(f) \le m\}$ of elements of a transformation semigroup which have rank at most *m* is itself a transformation semigroup.

Idempotents in transformation semigroups

Suppose that f_1 and f_2 are transformations of rank r. The rank of f_1f_2 is at most r. Equality holds if and only if $\text{Im}(f_1)$ is a transversal for $\text{Ker}(f_2)$, in the sense that it contains exactly one point from each part of the partition $\text{Ker}(f_2)$. This combinatorial relation between subsets and partitions is crucial for what follows. Here is one simple consequence.

Proposition

Let f be a transformation of Ω , and suppose that Im(f) is a transversal for Ker(f). Then some power of f is an idempotent with rank equal to that of f.

For the restriction of f to its image is a permutation, and some power of this permutation is the identity.

Permutation groups and transformation semigroups

Let *S* be a transformation semigroup whose intersection with the symmetric group is a permutation group *G*. How do properties of *G* influence properties of *S*. In particular, what can we say if $S = \langle G, a \rangle$ for some non-permutation a?

Here is a sample theorem due to Araújo, Mitchell and Schneider.

Theorem

Let G be a permutation group on Ω , with $|\Omega| = n$. Suppose that, for any map f on Ω which is not a permutation, the semigroup $\langle G, f \rangle$ is regular. Then either G is the symmetric or alternating group on Ω , or one of the following occurs:

•
$$n = 5, G = C_5, C_5 \rtimes C_2, or C_5 \rtimes C_4;$$

•
$$n = 6, G = PSL(2,5) \text{ or } PGL(2,5);$$

• n = 7, G = AGL(1,7);

•
$$n = 8, G = PGL(2,7);$$

•
$$n = 9, G = PGL(2, 8) \text{ or } P\Gamma L(2, 8).$$