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Permutation groups

For any set Ω, Sym(Ω) denotes the symmetric group of all
permutations of Ω, with the operation of composition.
If |Ω| = n, we write Sym(Ω) as Sn.
We write permutations to the right of their argument, and
compose from left to right: that is, αg is the image of α ∈ Ω
under the permutation g ∈ Sym(Ω), and

α(g1g2) = (αg1)g2.

A permutation group on Ω is a subgroup of Sym(Ω).
An action of a group G on Ω is a homomorphism from G to
Sym(Ω); its image is a permutation group on Ω. Whenever we
define a property of a permutation group, we use the name for
a property of the group action.



An example

Let G be the group of automorphisms of the cube, acting on the
set Ω of vertices, edges and faces of the cube: |Ω| = 26. The
action is faithful, so G is a permutation group.
Automorphism groups of mathematical objects provide a rich
supply of permutation groups. These objects can be of almost
any kind.



Orbits and transitivity

Let G be a permutation group on Ω. Define a relation ∼ on Ω
by the rule

α ∼ β if and only if there exists g ∈ G such that αg = β.

∼ is an equivalence relation on Ω. (The reflexive, symmetric
and transitive laws correspond to the identity, inverse, and
closure properties of G.)
The equivalence classes are called orbits; the group G is
transitive if there is just one orbit. Thus, a permutation group
has a transitive action on each of its orbits.
In the example, there are three orbits: the 8 vertices, the 12
edges, and the 6 faces.



Another way to say this

There is another way to describe transitivity, which will be
useful for further properties.
We say that a mathematical structure built on the set Ω is trivial
if it is invariant under Sym(Ω), and non-trivial otherwise.
Thus,

I a subset of Ω is trivial if and only if it is either Ω or the
empty set;

I a partition of Ω is trivial if and only if either it has a single
part, or all parts are singletons (sets of size 1);

I a simple graph on Ω is trivial if and only if it is either the
complete graph or the null graph.

So we can say:

A permutation group G on Ω is transitive if and only if
there are no non-trivial G-invariant subsets.



Transitive actions
Let G act on Ω, and take α ∈ Ω. The stabiliser of α in G is the set

{g ∈ G : αg = α}.
It is a subgroup of G.
If H is any subgroup of G, the (right) coset space of H in G is the
set G : H of right cosets Hx of H in G. There is a transitive
action of G on G : H, given by the rule

(Hx)g = H(xg).

Now there is a notion of isomorphism of group actions, and the
following theorem holds:

Theorem

I Any transitive action of G on Ω is isomorphic to the action of G
on the coset space G : Gα, for α ∈ Ω.

I The actions of G on coset spaces G : H and G : K are isomorphic
if and only if H and K are conjugate subgroups of G.



Regular permutation groups and Cayley’s Theorem

A permutation group G is regular on Ω if it is transitive and the
stabiliser of a point is the identity subgroup.
The right cosets of the identity are naturally in bijection with
the elements of G. So we can identify Ω with G so that the
action of G is on itself by right multiplication. Thus we have
Cayley’s Theorem:

Theorem
Every group of order n is isomorphic to a subgroup of Sn.
In particular we see that asking a group G to be a transitive
permutation group is no restriction on the abstract structure of
G.



Primitivity

A transitive permutation group G on Ω is primitive if the only
non-trivial G-invariant partitions are the trivial ones (the
partition with one part and the partition into singletons).
This can be said another way. A block of imprimitivity is a
subset B of Ω with the property that, for all g ∈ G, either Bg = B
or Bg∩ B = ∅. Then G is primitive if and only if the only blocks
of imprimitivity are Ω, singletons, and the empty set..
Consider our example G, in its transitive action on the vertices
of the cube. We see that G is imprimitive; indeed it preserves
two non-trivial partitions:

I the partition into pairs of antipodal points (opposite ends
of long diagonals;

I the partition into the vertex sets of two interlocking
tetrahedra.



Primitive groups

Theorem

I Let G be a transitive permutation group on Ω, where |Ω| > 1.
Then G is primitive if and only if the stabiliser of a point of Ω is
a maximal proper subgroup of G.

I Let G be primitive on Ω. Then every non-trivial normal
subgroup of G is transitive.

I Let G be primitive on Ω. Then G has at most two minimal
normal subgroups; if there are two, then they are isomorphic and
non-abelian, and each of them acts regularly.

The last part shows that, unlike for transitivity, not every group
is isomorphic to a primitive permutation group.



Basic groups

A Cartesian structure on Ω is an identification of Ω with Ad,
where A is some set. We can regard A as an “alphabet”, and Ad

as the set of all words of length d over the alphabet A. Then Ad

is a metric space, with the Hamming metric (used in the theory
of error-correcting codes): the distance between two words is
the number of positions in which they differ.
A Cartesian structure is non-trivial if |A| > 1 and d > 1.
Let G be a primitive permutation group on Ω. We say that G is
basic if it preserves no non-trivial Cartesian structure on Ω.
Although this concept is only defined for primitive groups, we
see that the imprimitive group we met earlier, the symmetry
group of the cube acting on the vertices, does preserve a
Cartesian structure. The automorphism group of a Cartesian
structure over an alphabet of size 2 is necessarily imprimitive –
generalise our argument for the cube to see this.



The O’Nan–Scott Theorem
A permutation group G is called

I affine if it acts on a vector space V and its elements are
products of translations and invertible linear
transformations of V, so that G contains all the translations;

I almost simple if T ≤ G ≤ Aut(T), where T is a non-abelian
finite simple group, and Aut(T) its automorphism group
(where T embeds into Aut(T) as the group of inner
automorphisms or conjugations).

I won’t define diagonal groups; here’s an example. Let T be a
finite simple group. Then T× T, acting on T by the rule

x(g, h) = g−1xh for all x, g, h ∈ G,

is a diagonal group. (The stabiliser of the identity is the
diagonal subgroup {(g, g) : g ∈ G} of G×G.)

Theorem
Let G be a finite basic primitive permutation group. Then G is affine,
diagonal, or almost simple.



Multiple transitivity

If G acts on Ω, then it has induced actions on the set of
t-element subsets of Ω, or the set of t-tuples of distinct elements
of Ω, where t ≤ |Ω|.
We say that G is t-homogeneous if the first action above is
transitive, and t-transitive if the second is.
A t-transitive group is t-homogeneous. The symmetric group
Sn is t-transitive for all t ≤ n, while the alternating group An is
t-transitive for t ≤ n− 2.
A 2-homogeneous group is primitive. (Exercise; proof later.)
For t = 2, these properties have graph-theoretic interpretations:

I G is 2-homogeneous if there are no non-trivial G-invariant
undirected graphs on Ω;

I G is 2-transitive if and only if there are no non-trivial
G-invariant directed graphs on Ω.



The Classification of Finite Simple Groups

A non-identity group is simple if its only normal subgroups are
itself and the identity subgroup.
The Classification of Finite Simple Groups, or CFSG, does what
its name suggests:

Theorem
A finite simple group is one of the following:

I a cyclic group of prime order;
I an alternating group An, for n ≥ 5;
I a group of Lie type;
I one of 26 sporadic groups.

This theorem has revolutionised finite permutation group
theory. I will end with one of its consequences.



Multiply transitive groups

Theorem (CFSG)

All finite 2-transitive groups are explicitly known.

Corollary (CFSG)

The only finite 6-transitive groups are the symmetric and alternating
groups.
Indeed, there are only two 5-transitive groups which are not
symmetric or alternating, the Mathieu groups M12 and M24;
and only two further 4-transitive groups, the Mathieu groups
M11 and M23.



Transformation semigroups
We recall the definitions.

I A semigroup is a set S with a binary operation ◦ satisfying
the associative law:

a ◦ (b ◦ c) = (a ◦ b) ◦ c

for all a, b, c ∈ S.
I A monoid is a semigroup with an identity 1, an element

satisfying
a ◦ 1 = 1 ◦ a = a

for all a ∈ S.
I A group is a monoid with inverses, that is, for all a ∈ S

there exists b ∈ S such that

a ◦ b = b ◦ a = 1.

From now on we will write the operation as juxtaposition, that
is, write ab instead of a ◦ b, and a−1 for the inverse of a.



Mind the gap between semigroups and groups!

To any semigroup we can add an identity to produce a monoid
of size one larger. Nothing like this is possible for groups!

Order 1 2 3 4 5 6 7 8
Groups 1 1 1 2 1 2 1 5

Monoids 1 2 7 35 228 2237 31559 1668997
Semigroups 1 5 24 188 1915 28634 1627672 3684030417

Note that the numbers of n-element semigroups and
(n + 1)-element monoids are fairly close; this is because we can
add an identity to an n-element semigroup to form an
(n + 1)-element monoid. But numbers of groups are much
smaller; the group axioms are much tighter!



Two analogues of Sym(Ω)

For a set Ω, let T(Ω) be the set of all the maps from Ω to itself,
with the operation of composition. If |Ω| = n, we write T(Ω) as
Tn. Note that T(Ω) is a monoid; it contains Sym(Ω), and
T(Ω) \ Sym(Ω) is a semigroup. T(Ω) is the full transformation
semigroup on Ω.
The order of Tn is nn.

Also let I(Ω) denote the set of all partial bijections on Ω
(bijections between subsets of Ω), with composition ‘where
possible’: if fi has domain Ai for i = 1, 2, then f1f2 has domain
(A1f1 ∩A2)f−1

1 and range (A1f1 ∩A2)f2. Again, if |Ω| = n, we
write In. This is the symmetric inverse semigroup.

The order of In is
n

∑
k=0

(
n
k

)2

k!; there is no closed form for this

expression.



Regularity

An element a of a semigroup S is regular if there exists x ∈ S
such that axa = a. The semigroup S is regular if all its elements
are regular. Note that a group is regular, since we may choose
x = a−1. The semigroup Tn is regular (exercise).
Regularity is equivalent to a condition which appears formally
to be stronger:

Proposition

If a ∈ S is regular, then there exists b ∈ S such that aba = a and
bab = b.

Proof.
Choose x such that axa = a, and set b = xax. Then

aba = axaxa = axa = a,
bab = xaxaxax = xaxax = xax = b.



Idempotents
An idempotent in a semigroup S is an element e such that
e2 = e. Note that, if axa = a, then ax and xa are idempotents. In
a group, there is a unique idempotent, the identity. By contrast,
it is possible for a non-trivial semigroup to be generated by its
idempotents.

Proposition

Let S be a finite semigroup, and a ∈ S. Then some power of a is an
idempotent.

Proof.
Since S is finite, the powers of a are not all distinct: suppose
that am = am+r for some m, r > 0. Then ai = ai+tr for all i ≥ m
and t ≥ 1; choosing i to be a multiple of r which is at least m,
we see that ai = a2i, so ai is an idempotent.
It follows that a finite monoid with a unique idempotent is a
group. For the unique idempotent is the identity; and, if ai = 1,
then a has an inverse, namely ai−1.



Inverse semigroups

The semigroup S is an inverse semigroup if for each a ∈ S there
exists a unique b ∈ S such that aba = a and bab = b. We say that
b is the (von Neumann) inverse of a.
The symmetric inverse semigroup I(Ω) is an inverse
semigroup.
In an inverse semigroup, the idempotents commute, and they
form a semilattice under the order relation e ≤ f if ef = fe = f .
In I(Ω), the semilattice of idempotents is isomorphic to the
Boolean lattice of all subsets of Ω.



Analogues of Cayley’s Theorem

Theorem
An n-element semigroup is isomorphic to a sub-semigroup of Tn+1.
In Cayley’s theorem, we let the group act as the group of right
multiplications of itself. For a semigroup, this action may not
be faithful. So first we add an identity e to form a monoid. Now
ea = eb implies a = b and all is well.
A similar but slightly harder theorem holds for inverse
semigroups:

Theorem (Vagner–Preston Theorem)

An n-element inverse semigroup is isomorphic to a sub-semigroup of
In.



Basics of transformation semigroups
Any map f : Ω→ Ω has an image

Im(f ) = {xf : x ∈ Ω},

and a kernel, the equivalence relation ≡f defined by

x ≡f y⇔ xf = yf ,

or the corresponding partition of Ω. (We usually refer to the
partition when we speak about the kernel of f , which is
denoted Ker(f ).) The rank rank(f ) of f is the cardinality of the
image, or the number of parts of the kernel.
Under composition, we clearly have

rank(f1f2) ≤ min{rank(f1), rank(f2)},

and so the set Sm = {f ∈ S : rank(f ) ≤ m} of elements of a
transformation semigroup which have rank at most m is itself a
transformation semigroup.



Idempotents in transformation semigroups

Suppose that f1 and f2 are transformations of rank r. The rank
of f1f2 is at most r. Equality holds if and only if Im(f1) is a
transversal for Ker(f2), in the sense that it contains exactly one
point from each part of the partition Ker(f2). This
combinatorial relation between subsets and partitions is crucial
for what follows. Here is one simple consequence.

Proposition

Let f be a transformation of Ω, and suppose that Im(f ) is a
transversal for Ker(f ). Then some power of f is an idempotent with
rank equal to that of f .
For the restriction of f to its image is a permutation, and some
power of this permutation is the identity.



Permutation groups and transformation semigroups
Let S be a transformation semigroup whose intersection
with the symmetric group is a permutation group G. How
do properties of G influence properties of S. In particular,
what can we say if S = 〈G, a〉 for some non-permutation a?

Here is a sample theorem due to Araújo, Mitchell and
Schneider.

Theorem
Let G be a permutation group on Ω, with |Ω| = n. Suppose that, for
any map f on Ω which is not a permutation, the semigroup 〈G, f 〉 is
regular. Then either G is the symmetric or alternating group on Ω, or
one of the following occurs:

I n = 5, G = C5, C5 o C2, or C5 o C4;
I n = 6, G = PSL(2, 5) or PGL(2, 5);
I n = 7, G = AGL(1, 7);
I n = 8, G = PGL(2, 7);
I n = 9, G = PGL(2, 8) or PΓL(2, 8).


