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The prototype result

Recall the theoreom of Araújo, Mitchell and Schneider in
Lecture 1. A semigroup is regular of each of its elements has a
(von Neumann) inverse.

Theorem
Let G be a permutation group on Ω, with |Ω| = n. Suppose that, for
any map f on Ω which is not a permutation, the semigroup 〈G, f 〉 is
regular. Then either G is the symmetric or alternating group on Ω, or
one of the following occurs:

I n = 5, G = C5, C5 o C2, or C5 o C4;
I n = 6, G = PSL(2, 5) or PGL(2, 5);
I n = 7, G = AGL(1, 7);
I n = 8, G = PGL(2, 7);
I n = 9, G = PGL(2, 8) or PΓL(2, 8).



The problem

Our goal is to strengthen this theorem, by requiring regularity
of 〈G, f 〉 only for some choices of f . Targets in increasing order
of difficulty could include:

I all maps f with rank(f ) = k, for some k;
I all maps f with Im(f ) = A, for some fixed k-set A;
I a single map f .

We are a long way from a definitive result on the last case, but
there has been substantial progress on the other two. This is
today’s topic.



Transitivity and homogeneity

As we saw, (CFSG) has the consequence that, for k ≥ 2, the
finite k-transitive groups are all known explicitly. The lists
(other than symmetric and alternating groups) are finite for
k = 4, 5 and infinite for k = 2, 3.
Much earlier, Livingstone and Wagner had investigated the
relationship between k-homogeneity and k-transitivity. (We
remarked earlier that k-transitivity implies k-homogeneity.) A
group of degree n is k-homogeneous if and only if it is
(n− k)-homogeneous; so we may assume that k ≤ n/2. Now
Livingstone and Wagner proved the following theorem by
elementary methods:



The Livingstone–Wagner theorem

Theorem
Suppose that k ≤ n/2, and let G be k-homogeneous of degree n. Then

I G is (k− 1)-homogeneous;
I G is (k− 1)-transitive;
I if k ≥ 5, then G is k-transitive.

Subsequently, Kantor determined all the k-homogeneous but
not k-transitive groups for k = 2, 3, 4. (There are infinitely many
for k = 2, 3 but only finitely many for k = 4.) These arguments
do not use CFSG.



k-homogeneous implies (k− 1)-homogeneous

The function on a permutation group which maps an element g
to its number fix(g) of fixed points is a character of G, the trace
of a matrix representation.
The character theory of finite symmetric groups is a classical
subject. In particular, there are irreducible characters χi for
0 ≤ k ≤ n/2 such that the permutation character πk of the
action on k-sets is given by

πk =
k

∑
i=0

χi.

In particular, πk−1 is a constituent of πk.
Now restrict to a group G. If G is k-homogeneous, it is
transitive on k-sets, and so πk|G contains the trivial character
with multiplicity 1. Since πk−1 is a constituent, the multiplicity
of the trivial character in it must also be 1, whence G is
transitive on (k− 1)-sets, that is, (k− 1)-homogeneous.



The k-homogeneous, not k-transitive groups

The case k = 2: If G is 2-homogeneous but not 2-transitive, then
G has odd order (because if |G| is even then some pair, and
hence every pair, would be interchanged by an involution in G).
Hence G is solvable (by the Feit–Thompson Theorem, and so is
an affine group: its minimal normal subgroup is the group of
translations of a finite vector space.
Then 〈G,−I〉 is 2-transitive and has G as a subgroup of index 2.
Using the earlier classification of solvable 2-transitive groups
leads to the identification of G.
The case k = 3: This falls into two types: one consists of groups
having a normal subgroup PSL(2, q) for some odd q (a
transitive extension of the previous case); the other has just
three groups, of degrees 8, 8 and 32.
The case k = 4: We only get transitive extensions of the second
case above, with degrees 9, 9 and 33.



Regularity

We need to understand what it means that the map f is regular
in 〈G, f 〉.
Suppose that f is regular, with von Neumann inverse h. Say

h = g1fg2 · · · gm−1fgm,

so that
fg1fg2 · · · gm−1fgmf = f .

Hence

rank(f ) ≥ rank(fg1f ) ≥ rank(fg1fg2 · · · gm−1fgm) = rank(f ),

so equality holds throughout.
Now from rank(f ) = rank(fg1f ) it follows that g1 maps Im(f ) to
a transversal for Ker(f ).



Conversely suppose that g is a permutation such that Im(fg) is
a transversal to Ker(f ). Then fg induces a permutation of Im(f ),
and some power of it is the identity on Im(f ), so that (fg)m is an
idempotent. Then

(fg)mf = f ,

so f is regular in 〈f , g〉, with von Neumann inverse g(fg)m−1.
We conclude:

Theorem
The map f is regular in 〈f , G〉 if and only if G contains an element
which maps Im(f ) to a transversal for Ker(f ).



The universal transversal property

Let k be a positive integer less than n, and G a permutation
group of degree n. We say that the permutation group G has
the k-universal transversal property if, for any k-set A and any
k-partition P, there is an element g ∈ G such that Ag is a
transversal for P.
It follows from the preceding result that:

Theorem
For the permutation group G and positive integer k, the following are
equivalent:

I for every map f of rank k, f is regular in 〈G, f 〉;
I G has the k-universal transversal property.

This is because, given any k-set A and k-partition P, there is a
map of rank k whose image is A and whose kernel is P.
So our first target requires the classification of groups with the
k-universal transversal property (or k-ut property, for short).



A surprise

Araújo and I proved the following theorem:

Theorem (CFSG)

Given k with 1 ≤ k ≤ n/2, the following conditions are equivalent
for a subgroup G of Sn:

I For any rank k map f , f is regular in 〈G, f 〉.
I For any rank k map f , 〈G, f 〉 is regular (this means that all its

elements are regular).
I For any rank k map f , f is regular in 〈g−1fg : g ∈ G〉.
I For any rank k map f , 〈g−1fg : g ∈ G〉 is regular.
I G has the k-universal transversal property.

As we saw, the first and fifth conditions are equivalent. Also
the equivalence of the first and third, and of the second and
fourth, was already known to semigroup theorists.
But why does regularity for elements of rank k imply regularity
for elements of smaller rank?



k-ut implies (k− 1)-ut

The heart of our proof is:

Theorem (CFSG)

For 2 ≤ k ≤ n/2, the k-ut property implies the (k− 1)-ut property.
This is reminiscent of the first part of the Livingstone–Wagner
theorem. We spent some time looking for an elementary
combinatorial proof of this fact, but didn’t succeed.
Instead, our argument for this simple fact comes close to a
complete classification of the permutation groups with the k-ut
property. So, indeed, its proof depends on CFSG.



Primitivity revisited

Theorem
For a permutation group G on Ω, with |Ω| = n > 2, the following
conditions are equivalent:

I G is primitive (that is, G preserves no non-trivial partition of Ω);
I every non-trivial G-invariant graph on Ω is connected;
I G has the 2-ut property;
I for any map f of rank n− 1, 〈G, f 〉 is synchronizing.

The equivalence of 2-ut and primitivity show that we cannot
hope for a complete classification of 2-ut groups. We’ll look at
k-ut for k > 2.



Proofs

Proof.
The connected components of a disconnected G-invariant
graph form a G-invariant partition. Conversely, if G preserves a
non-trivial partition, then it preserves the disjoint union of
complete graphs on its parts. So the first two conditions are
equivalent.
The 2-ut property says that an orbit of G on 2-sets (the edge set
of a minimal non-null G-invariant graph) contains a transversal
to any 2-partition; so any such graph is connected. So the
second and third conditions are equivalent.
The equivalence of the last condition is a theorem of Rystsov;
the proof is an exercise. (This gives another proof that
synchronizing groups are primitive.)



(l, k)-homogeneity

Our argument uses a generalisation of k-homogeneity. We say
that the permutation group G on Ω is (l, k)-homogeneous for
l ≤ k if given any k-subset K and l-subset L of Ω, there exists
g ∈ G such that Lg ⊆ K.

I (k, k)-homogeneity is equivalent to k-homogeneity.
I A group with k-ut is (k− 1, k)-homogeneous. [For if
|L| = k− 1, consider the partition P into the singletons of L
and all the rest. Then G contains an element g such that Kg
is a transversal to P; so Lg−1 ⊆ K.]

I A (k− 1)-homogeneous group is clearly
(k− 1, k)-homogeneous. Conversely, we will now see that
a (k− 1, k)-homogeneous group of sufficiently large degree
is (k− 1)-homogeneous.



The Ramsey argument

The Ramsey number Rk−1(k, k) is the smallest number n such
that, if the (k− 1)-subsets of an n-set are coloured red and blue
in any manner, then there is a monochromatic set of size k (one
such that all its (k− 1)-subsets have the same colour).
Let f (k) be the Ramsey number Rk−1(k, k). Suppose that
n ≥ f (k), and let G be a permutation group of degree n which is
(k− 1, k)-homogeneous. Suppose that G is not
(k− 1)-homogeneous. Then it has at least two orbits on the set
of (k− 1)-subsets; choose one orbit and colour its members red,
and colour the other (k− 1)-sets blue.
Since n ≥ Rk−1(k, k), there exists a monochromatic k-set. But
since G is (k− 1, k)-homogeneous, every k-set contains
representatives of all the G-orbits on (k− 1)-sets, and in
particular contains both red and blue sets.
This is a contradiction!



The k-ut property

Pushing harder, we show that a (k− 1, k)-homogeneous group
is (k− 1)-homogeneous with a few small exceptions. For k > 2,
as explained, we know (from CFSG and Kantor’s work) the list
of (k− 1)-homogeneous groups. The result is an almost
complete classification of groups with k-ut for 2 < k ≤ n/2.
A few stubborn families, including the Suzuki groups Sz(q) for
k = 3, are still holding out, and provide an interesting
challenge for group theorists.



The k-existential transversal property

In order to study groups G such that 〈G, f 〉 is regular for all
maps f with a prescribed image (instead of a prescribed rank),
we need a weakening of k-ut, defined as follows.
The permutation group G on Ω has the k-existential transversal
property, or k-et for short, if there exists a set A of size k such
that, for any k-partition P, some image of A is a transversal for
P. The set A is called a witnessing set for G.
This problem poses further group-theoretic and combinatorial
challenges, which I will describe briefly.



General results

Groups with k-et need not be transitive; but, for 2 < k < n, an
intransitive group with k-et fixes a point and acts
(k− 1)-homogeneously on the remaining points. So these
groups are known.
Transitive groups with k-et for 4 ≤ k ≤ n/2 must be primitive
with finitely many exceptions.
However, there is a shock in store. It is not true that k-et implies
(k− 1)-et. In fact just two counterexamples are known: these
are the 3-transitive groups AGL(4, 2) = 24 o A8 and its
subgroup 24 o A7. These groups have 4-et and 6-et but not 5-et.
It is conjectured that they are the only exceptions. Indeed, we
hope to classify k-et groups for k ≥ 4.



Tools

Suppose that G is k-et, with witnessing set A. Then every
G-orbit on (k− 1)-sets has a representative in A (take partitions
consisting of k− 1 singletons and the rest in a single part). So
there are at most k such orbits, and

|G| ≥
(

n
k− 1

)/
k.

In fact this bound can be improved, roughly by a factor of 2.
However, one of the striking consequences of CFSG is that
primitive groups are small, or order at most n1+log n with
“known” exceptions. Confronting these two bounds gives
strong restrictions.
Combinatorial tools such as Ramsey’s theorem are also useful.



Results

Theorem (CFSG)

A transitive group with the k-et property, for 8 ≤ k ≤ n/2, is
symmetric or alternating.
This is best possible, since the Mathieu group M24 has 7-et but
not 8-et. However, we expect that it will be the only one.
In order to go from “f is regular in 〈G, f 〉” to “〈G, f 〉 is regular”,
we would like to know that k-et implies (k− 1)-ut with known
exceptions. We would then need to be able to handle these
exceptions, using information about the group to restrict the
maps f that need to be considered.



Further work

We hope to complete the classification of groups with the k-et
property for k ≥ 4. The case k = 3 may be more challenging,
but k = 2 is hopeless.
Recall that the 2-ut property is equivalent to primitivity. The
2-et property is weaker. Let us say that a group G is totally
imprimitive if any pair of distinct points a and b of Ω are
contained together in a proper block of imprimitivity for G.

Proposition

The permutation group G has the 2-et property if and only if it is not
totally imprimitive.
Another thing we would very much like to do is to find an
“elementary” proof (not using CFSG) that the k-ut property
implies the (k− 1)-ut property for k ≤ n/2.


