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Idempotent generation

We are interested in when a semigroup S is
idempotent-generated, that is, generated by the idempotents it
contains.
Of course, a group contains only one idempotent; so a
semigroup whose units form a non-trivial group cannot be
idempotent generated. Thus we can pose our problem as
follows:
For which groups G ≤ Sym(Ω) is it true, that for all (or all
satisfying some restriction) maps f , the semigroup 〈G, f 〉 \G is
idempotent-generated?
Requiring this for all f ∈ T(Ω) \ Sym(Ω), the question was
settled by Araújo, Mitchell and Schneider in the paper
mentioned earlier.
So we will typically require this to hold for all maps of some
given rank k.



Idempotent generation and k-ut

We saw in the last lecture that the following are equivalent:
I G has the k-ut property;
I for any map f of rank k, 〈G, f 〉 \G contains an idempotent

of rank k.
So the condition “for all maps f of rank k, 〈G, f 〉 \G is
idempotent-generated” is a strengthening of k-ut. (We will call
this the k-ig property.)
In general, we don’t have a precise equivalent of k-ig. We
defined a notion of strong k-ut which implies k-ig, and obtained
some results this way.



The case k = 2

The most interesting case is the case k = 2.
We saw in the last lecture that 2-ut is equivalent to primitivity,
which is also equivalent to the connectedness of all non-empty
G-invariant graphs.
So 2-ig is a strengthening of primitivity.
It can also be shown that a 2-homogeneous group has the 2-ig
property. So we have another condition fitting between
primitive and 2-homogeneous.



The road closure property

We say that the transitive permutation group G on Ω has the
road closure property if the following holds: for any orbit O of
G on 2-sets, and any proper block of imprimitivity B for the
action of G on O, the graph with vertex set Ω and edge set O \ B
is connected.
Clearly this implies that all the orbital graphs (the minimal
non-trivial G-invariant graphs) are connected; this is equivalent
to primitivity of G.
So the question: Which groups have the road closure property?
is a question about primitive groups.
The name comes from the thought that if (Ω, O) is a connected
road network, and if workers come and dig up all the roads in
a block of imprimitivity, the network remains connected.



Road closure and idempotent generation

The reason why we are interested in the road closure property
is given by the following theorem:

Theorem
For a permutation group G on Ω, the following are equivalent:

I for any map f of rank 2, the semigroup 〈G, f 〉 \G is
idempotent-generated (that is, G has the 2-ig property);

I G has the road closure property.

We saw already that 2-ig is stronger than 2-ut; this agrees with
our observation that the road closure property is stronger than
primitivity.



An example

An example of a primitive group which fails to have the road
closure property is the automorphism group of the square grid
graph: this is primitive for m > 3 (but of course not basic, since
the grid is a Cartesian structure).
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The automorphism group is transitive on the edges of this
graph, and has two blocks of imprimitivity, the horizontal and
vertical edges. If it is a road network, and if all the blue edges
are closed, the network is disconnected: it is no longer possible
to travel between different horizontal layers.



Non-basic groups

Theorem
A non-basic group fails to have the road closure property.
This is similar to the example we just saw. A non-basic group
preserves a Hamming graph; an orbit on edges of this graph
has m blocks of imprimitivity (where m is the dimension of the
Cartesian structure), and removing one of them separates the
(m− 1)-dimensional “slices”.
So we need to consider only basic groups. By the O’Nan–Scott
Theorem, these are affine, diagonal, or almost simple.



Another example

Not all basic groups have the road closure property.
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Let G be the group of automorphisms and dualities of the Fano
plane (shown), acting on the set of flags of the plane. The action
is primitive. Take the orbital graph in which two flags are
joined if they share a point or a line. The edges fall into two
types (depending on whether the common element is a point or
a line), forming blocks of imprimitivity. Removing one block,
say flags sharing a point, means from a given flag we are
restricted to its line.



A general result

This example extends to the following theorem.

Theorem
Let G be a primitive group which has an imprimitive subgroup of
index 2. Then G does not have the road closure property.
The proof is like the one just seen.



A positive example

The automorphism group of the Petersen graph (S5 acting on
2-sets) has the road closure property. A block of imprimitivity
is shown in red; its removal leaves a connected graph.
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One final class

Only one further class of groups failing to have the Road
Closure Property is known. These are the groups with socle
PΩ+(8, q) containing the triality automorphism, acting on the
cosets of the parabolic subgroup corresponding to the three
leaves of the D4 Coxeter–Dynkin diagram.
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The Road Closure Conjecture

Conjecture

Let G be a basic primitive permutation group, which has no
imprimitive subgroup of index 2, and is not one of the triality
examples described above. Then G has the road closure property.
This conjecture has been proved in several cases:

I 2-homogeneous groups;
I groups of prime or prime squared degree;
I symmetric or alternating groups acting on k-sets;
I groups of degree at most 130.



Partition homogeneity

I conclude with a couple of related topics.

Question
Which permutation groups G have the property that

〈G, f 〉 \G = 〈Sn, f 〉 \ Sn

for all maps f with rank(f ) = k?



λ-homogeneity

Let λ be a partition of the positive integer n: this means that λ
is a non-increasing sequence of positive integers whose sum is
equal to n.
Let |Ω| = n. The shape of a partition P of Ω is the list of
cardinality of the parts of P in non-increasing order. Now we
say that G is λ-homogeneous if it acts transitively on the set of
partitions of shape λ.
The maps of rank k in 〈Sn, f 〉 are those whose kernel has the
same shape as that of f and whose image has the same
cardinality as that of f .
So G has the property of the preceding slide if and only if it is
k-homogeneous and λ-homogeneous.



Homogeneity and transitivity

Note that a similar concept, λ-transitive, related to
λ-homogeneous much as k-transitive is to k-homogeneous, was
introduced by Martin and Sagan. (This requires G to be
transitive on ordered partitions of shape λ.)
The λ-homogeneous permutation groups have been classified
by André, Araújo and Cameron, and the problem posed above
was solved. The λ-homogeneous groups were independently
classified by Dobson and Malnič.
For λ = (1, 1, . . . , 1), every permutation group on Ω is
λ-homogeneous, but only the symmetric group is λ-transitive.
So we ignore this case.



λ-homogeneous, not λ-transitive

Theorem
Suppose that λ is a partition of n, not (1, 1, . . . , 1), and G a
permutation group which is λ-homogeneous but not λ-transitive.
Then one of the following happens:

I G is intransitive; then G fixes one point and acts as Sn−1 or
An−1 or one of finitely many other groups on the remainder, and
λ has all parts equal; or

I G is transitive, and either λ = (n− t, 1, . . . , 1) and G is
t-homogeneous but not t-transitive, or G is one of finitely many
exceptions.

The largest exception is M24 (n = 24), with λ = (3, 2, 1, . . . , 1).



λ-transitive

In this result we exclude G = Sn and G = An. We say that (G, λ)
is standard if, for some t ≤ n/2, we have G is t-homogeneous,
the largest part of λ is n− t, and the stabiliser of a t-set in G is
µ-transitive on it, where µ consists of the remaining parts of λ.
(It is easy to reduce the classification of such groups to that of
t-transitive groups.)

Theorem
Let G 6= Sn or An, λ 6= (n). Then G is λ-transitive if and only if
(G, λ) is standard.
The last two theorems give the classification of groups G
satisfying

〈G, f 〉 \G = 〈Sn, f 〉 \ Sn

for all maps f with rank(f ) = k.



Normalizing groups

Question
Which groups G satisfy

〈G, f 〉 \G = 〈g−1fg : g ∈ G〉

for all non-permutations f ?
Such groups are called normalizing groups. They have been
determined: we have the symmetric and alternating groups,
the trivial group, and finitely many others.
The next step in this direction would be to classify the groups
for which the above semigroups are equal for all maps f of
given rank k (the k-normalizing groups).



Automorphisms

Perhaps the single most surprising fact about finite groups is
the following.

Theorem
The only symmetric group (finite or infinite) which admits an outer
automorphism is S6.
An outer automorphism of a group is an automorphism not
induced by conjugation by a group element. In the case of
symmetric groups, the group elements are all the permutations,
and so an outer automorphism is one which is not induced by a
permutation.
The outer automorphism of S6 was known in essence to
Sylvester; it arguably lies at the root of constructions taking us
to the Mathieu groups M12 and M24, the Conway group Co1,
the Fischer–Griess Monster, and the infinite-dimensional
Monster Lie algebra.



Sylvester’s construction

Begin with A = {1, . . . , 6}, so |A| = 6. A duad is a 2-element
subset of A; so there are 15 duads. A syntheme is a set of three
duads covering all the elements of A; there are also 15
synthemes. Finally, a total (or synthematic total) is a set of five
synthemes covering all 15 duads. It can be shown that there are
6 totals. Let B be the set of totals.
Then any permutation on A induces permutations on the
duads and on the synthemes, and hence on B; this gives a map
from the symmetric group on A to the symmetric group on B
which is an outer automorphism of S6.
This outer automorphism has order 2 modulo inner
automorphisms. For any syntheme lies in two totals, so we can
identify synthemes with duads of totals; any duad lies in three
synthemes covering all the totals, so we can identify duads
with synthemes of totals; and finally, each element of A lies in 5
duads whose corresponding synthemes of totals form a total of
totals!



Automorphisms of transformation semigroups

Sullivan proved the following theorem 40 years ago:

Theorem
A finite transformation semigroup S containing all the rank 1 maps
has the property that all its automorphisms are induced by
permutations.

Corollary

Let S be a transformation semigroup which is not a permutation
group, whose group of units is a synchronizing permutation group.
Then Aut(S) is contained in the symmetric group; that is, all
automorphisms of S are induced by conjugation in its normaliser in
the symmetric group.
Can we weaken “synchronizing” to “primitive” here?



A small step

If G is not synchronizing, the smallest possible rank of an
element in a non-synchronizing monoid with G as its group of
units is 3.

Theorem
Let S be a transformation semigroup containing an element of rank at
most 3, and whose group of units is a primitive permutation group.
Then the above conclusion holds: all automorphisms of S are induced
by conjugation in its normaliser in the symmetric group.
We must reconstruct the points of Ω from the images and
kernels of maps of rank 3 in a way which is invariant under
automorphisms of S. For example, consider the images, which
are maximal cliques in a graph Γ with S ≤ End(Γ). No two
such cliques can intersect in two points; we distinguish pairs of
cliques intersecting in a point from disjoint pairs of cliques by
properties of the idempotents.



. . . for your attention.


