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Synchronization

You are in a dungeon consisting of a number of rooms.
Passages are marked with coloured arrows. Each room
contains a special door; in one room, the door leads to freedom,
but in all the others, to death. You have a map of the dungeon,
but you do not know where you are.

←

←

�
�
�
�
�
�
�
�
�
��

↗
.

..........................................

........................................

.......................................

.....................................

....................................

...................................

...................................

....................................

.....................................

.......................................

........................................

..........................................

↘

↓

↑
.

..........................................

........................................

.......................................

.....................................

....................................

...................................

...................................

....................................

.....................................

.......................................

........................................

..........................................

↖
↘

t t

t t1 2

34

You can check that (Blue, Red, Blue) takes you to room 1 no
matter where you start.



Automata

The diagram on the last page shows a finite-state deterministic
automaton. This is a machine with a finite set of states, and a
finite set of transitions, each transition being a map from the set
of states to itself. The machine starts in an arbitrary state, and
reads a word over an alphabet consisting of labels for the
transitions (Red and Blue in the example); each time it reads a
letter, it undergoes the corresponding transition.
A reset word is a word with the property that, if the automaton
reads this word, it arrives at the same state, independent of its
start state. An automaton which possesses a reset word is
called synchronizing.
Not every finite automaton has a reset word. The Černý
conjecture asserts that, if an n-state automaton is synchronizing,
then it has a reset word of length at most (n− 1)2. (If true, this
would be best possible.) The conjecture is still open after half a
century, and has motivated a lot of work on synchronization.



Automata and transformation semigroups

Combinatorially, an automaton is an edge-coloured digraph
with one edge of each colour out of each vertex. Vertices are
states, colours are transitions.
Algebraically, if Ω = {1, . . . , n} is the set of states, then any
transition is a map from Ω to itself. Reading a word composes
the corresponding maps, so the set of maps corresponding to
all words is a transformation semigroup on Ω.
So an automaton is a transformation semigroup with a
distinguished generating set.
An automaton is synchronizing if and only if the
transformation semigroup contains a map of rank 1, that is,
whose image has cardinality 1.



The obstruction to synchronizataion

Let Γ be a simple (undirected) graph on the vertex set Ω. An
endomorphism of Γ is a map on Ω which takes edges of Γ to
edges of Γ; there is no restriction to what it does to a non-edge
(which can map to A non-edgs, or an edge, or collapse to a
vertex).
The endomorphisms of Γ form a monoid, the endomorphism
monoid of Γ, denoted by End(Γ).

Theorem
A transformation semigroup S on Ω fails to be synchronizing if and
only if there is a non-null graph Γ on Ω with clique number equal to
chromatic number (that is, with core a complete graph) such that
S ≤ End(Γ).



Permutation groups

João Araújo and Ben Steinberg considered semigroups of the
form 〈G, f 〉, where G is a permutation group and f a
non-permutation. They made the following definition.
A permutation group G on Ω is synchronizing if, given any
map a : Ω→ Ω which is not a permutation, the semigroup
〈G, a〉 is synchronizing in the previous sense, that is, contains a
rank 1 element.

Theorem
The permutation group G is non-synchronizing if and only if there is
a non-trivial G-invariant graph Γ with clique number equal to
chromatic number.



Separation

There is a closely related property, which can be phrased in
terms of graphs as follows (this was not the original form). The
transitive permutation group G is non-separating if there is a
non-trivial G-invariant graph for which the product of clique
number and independence number is equal to the number of
vertices. (For a vertex-transitive graph, the product of clique
number and independence number cannot exceed the number
of vertices.)
If no such graph exists, then G is separating.
Note that, if a vertex-transitive graph has clique number equal
to chromatic number, then all the colour classes in a minimal
colouring have the same size, so the product of clique and
independence numbers is equal to the number of vertices.



The big problem

Theorem
2-homogeneous⇒ separating⇒ synchronizing⇒ primitive. None
of these implications reverses.
The big problem is:

Question
Determine the synchronizing (or separating) permutation groups.
For more details about the status of this problem, and related
concepts on permutation groups derived from semigroups, see
J. Araújo, P. J. Cameron and B. Steinberg, “Between primitive
and 2-transitive: synchronization and its friends”, European
Math. Soc. Surveys 4 (2017), 101–184.



Sn on k-sets: the Johnson scheme

One important family, which I will talk about here, consists of
the symmetric group Sn acting on k-sets, for k < n/2.
In this case, the orbital graphs (the minimal non-trivial
G-invariant graphs) are defined by joining two k-sets if the
cardinality of their intersection is i, for some fixed i with
0 ≤ i ≤ k− 1. These are the associate classes in the Johnson
association scheme.
So any G-invariant graph is defined by a subset I of
{0, . . . , k− 1}, with two k-sets joined if their intersection
belongs to I. Let us call this graph ΓI(n, k).
We have to decide whether such graphs can have clique
number equal to chromatic number, or product of clique
number and independence number equal to (n

k).



Erdős–Ko–Rado theorem

The Erdős–Ko–Rado theorem (proved 1938, published 1961)
says that, for n sufficiently large in terms of k and t, the largest
size of a family of t-intersecting k-subsets of {1, . . . , n} is (n−t

k−t),
and is realised by the family of k-sets containing a fixed t-set.
How large is large enough? This was worked out by Wilson.



Steiner systems

This problem led us to a conjecture which would be a wide
extension of part of Peter Keevash’s existence theorem for
t-designs.
A Steiner system S(t, k, n) is a collection of k-subsets (called
blocks) of a set of n points with the property that any t points
lie in a unique block.
If such a system exists, then Sn acting on k-sets is not
separating: the blocks of the system form a clique in the graph
in which two k-sets are joined if they meet in at most t− 1
points, and the k-sets containing a fixed t-set form an
independent set (of Erdős–Ko–Rado type, or EKR type), and
the product of the sizes of these sets is (n

k).



The conjecture

Conjecture

There is a function F such that, if n > F(k), then Sn acting on k-sets
is non-separating if and only if a Steiner system S(t, k, n) exists for
some t with 0 < t < k.
In other words, out of all the graphs ΓI(n, k), the only ones that
matter for large n are those with I = {0, . . . , t− 1} or
I = {t, . . . , k− 1}.
There are well-known divisibility conditions which are
necessary for the existence of a Steiner system: (k−i

t−i) must
divide (n−i

t−i) for i = 0, . . . , t− 1. Keevash showed that, for n
sufficiently large, these conditions are also sufficient.
So the conjecture can be re-phrased: for n > G(k), Sn on k-sets is
non-separating if and only if the divisibility conditions hold for
some t with 0 < t < k.



And what about synchronizing?

There is a similar conjecture. A large set of Steiner systems
S(t, k, n) is a partition of the set of k-subsets of an n-set into
Steiner systems. If a large set exists, then Sn on k-sets is not
synchronizing.

Conjecture

There is a function H such that, for n > H(k), Sn acting on k-sets is
non-synchronizing if and only if a large set of Steiner systems
S(t, k, n) exists for some t with 0 < t < k.
Less is known about the existence of large sets, and we do not
feel confident enough to conjecture an analogue of Keevash’s
theorem for them.



Results

The separation conjecture is true for k ≤ 4:

Theorem

I For n ≥ 5, Sn acting on 2-sets is synchronizing if and only if it
is separating; this occurs if and only if n is odd.

I For n ≥ 7, Sn on 3-sets is synchronizing if and only if it is
separating; this occurs if and only if n ≡ 2, 4 or 5 (mod 6) and
n > 8.

I For n ≥ 9, Sn on 4-sets is synchronizing if and only if it is
separating; this occurs if and only if n ≡ 3, 5, 6, 7, 9 or 11
(mod 12) and n > 9.

These agree with the conjecture. e.g. for k = 4, by results of
Hanani, the necessary and sufficient conditions for the
existence of S(t, 4, n) are n ≡ 0 (mod 4) for t = 1, n ≡ 1 or 4
(mod 12) for t = 2, and n ≡ 2 or 4 (mod 6) for t = 3.



Proof tools

The main tool is a theorem of Delsarte:

Theorem
Let A be an association scheme on v vertices and let Γ be the union of
some of the graphs in the scheme. If C is a clique and S is an coclique
in Γ, then |C| · |S| ≤ v. If equality holds and x and y are the
respective characteristic vectors of C and S, then
(xEjx>)(yEjy>) = 0 for all j > 0, where E0, E1, . . . are the minimal
idempotents in the Bose–Mesner algebra of the scheme.
In order to apply this, we need expressions for the minimal
idempotents in terms of the basis matrices of the algebra. These
are given by the Q-matrix of the scheme.
For the Johnson scheme, the entries of the Q-matrix are
expressed in terms of the Eberlein polynomials. This can also
be found in Delsarte’s thesis.



Exceptions

We saw in the theorem earlier that there are exceptions for
k = 3, n = 7, 8, and for k = 4, n = 9.
For k = 3, n = 8, the Fano plane S(2, 3, 7) is a 7-clique in the
graph corresponding to intersection 1. A 7-colouring of this
graph is given by the extension S(3, 4, 8): for each of the 7
parallel classes of blocks, give a colour to the 3-subsets of the
two blocks in this class.
A similar construction works for k = 3, n = 7: the Fano plane is
a 7-clique; for each of its lines, that line together with the four
3-sets disjoint from it form a colour class in a 7-colouring.



For k = 4, n = 9, there is an overlarge set of S(3, 4, 8) systems
on 9 points, a partition of the 4-sets into 9 such systems, each
omitting one point, found by Breach and Street. This is a
9-colouring of the graph on 4-sets corresponding to
intersections 1 and 3. It is straightforward to find a 9-clique in
this graph.
Breach and Street found computationally that there are just two
overlarge sets up to isomorphism, each admitting a doubly
transitive automorphism group. Praeger and I found a more
conceptual proof, using the geometric phenomenon of triality
on the hyperbolic quadric in PG(7, 2).
So small exceptions are often very beautiful configurations! The
pattern continues, since examples arising from S(4, 5, 11) give
exceptions to the conjecture in the case k = 5, n = 11 or n = 12.



Other association schemes

Hamming schemes: Since the Hamming graph H(n, q) has
clique number and chromatic number q, it is
non-synchronizing. (Indeed, primitive groups which are
non-basic (that is, contained in a wreath product with the
product action) are non-synchronizing.
q-Johnson schemes: Here similar considerations apply to the
Johnson schemes. But the theory of Steiner systems in
q-Johnson schemes is in its infancy, the first nontrivial example
having been found by Michael Braun, Tuvi Etzion, Patric R. J.
Östergård and Alexander Vardy in 2016. There are hard open
problems here!



Polar spaces: Only the case of points has been studied. A
classical polar space is non-synchronizing if and only if it has
either an ovoid and a spread, or a partition into ovoids; it is
non-separating if it has an ovoid. The complete solution to
which polar spaces have these properties is not yet known
despite many decades of research.
Others: Pick your favourite family of permutation groups or
association schemes. Which ones are synchronizing, which are
separating? The answer is probably not known! (The
synchronization property is closed under coarsening, and a
synchronizing scheme is primitive – that is, all relations are
connected.)

. . . for your attention!


