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In this first introductory lecture, I introduce some basic ideas about permuta-
tion groups: their connection with group actions; orbit decomposition; primitivity
and multiple transitivity.

These ideas will be expanded by the other lecturers. My intention is to include
just what I need for the remainder of my lectures.

1 Permutation groups and group actions
Let Ω be a set, which may be finite or infinite (but will usually be finite). We
denote by Sym(Ω) the symmetric group on Ω, the group whose elements are all
the permutations of Ω (the bijective maps from Ω to itself), with the operation of
composition.

If Ω is finite, say |Ω|= n, we often write Sym(Ω) as Sn.

Remark We compose permutations from left to right, so that g1g2 means “apply
first g1, then g2”. This goes naturally with writing a permutation on the right of
its argument:

α(g1g2) = (αg1)g2.

Now a permutation group on Ω is simply a subgroup of Sym(Ω); that is, a
permutation group G is a set of permutations of Ω which is closed under compo-
sition, contains the identity permutation, and contains the inverse of each of its
elements.

Remark Let S be a mathematical structure of virtually any type built on the
set Ω. Then the automorphism group of S is usually a permutation group on
Ω. (A little care is required: if S is a topology, then taking “automorphism” to
mean “continuous bijection” does not work; we should take “automorphism” to
be “homeomorphism” in this case.)

1



There is a related concept, that of a group action.
Let G be a group (in the abstract sense of group theory, a set with a binary

operation). Then an action of G on Ω is a homomorphism from G to Sym(Ω);
in other words, it associates a permutation with each element of G. The image of
a group action is a permutation group; the extra generality is that the action may
have a kernel. The extra flexibility is important, since the same group may act on
several different sets.

Example As a running example, let G be the group of symmetries of a cube
(Figure 1).

Figure 1: A cube

Let Ω be the set of size 26 consisting of the 8 vertices, 12 edges, and 6 faces
of the cube. Then G acts on Ω; the action is faithful (no symmetry can fix all the
vertices except the identity), so we can regard G as a permutation group on Ω.

It is often the case, as in the examples below, that when we say “Let G be a
permutation group on Ω”, we could as well say “Let the group G act on Ω”. For
example, any permutation group property immediately translates to group actions.

2 Orbits and transitivity
In our example, the group G contains permutations which map any vertex to an-
other vertex; we cannot map a vertex to an edge. We formalise this by the notion
of orbits.
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Let G be a permutation group on Ω. Define a relation ∼ on Ω by the rule

α ∼ β if and only if there exists g ∈ G such that αg = β .

Question Show that ∼ is an equivalence relation on Ω. (You will find that the
reflexive, symmetric and transitive laws correspond to the identity, inverse, and
closure properties of G.)

Defend the thesis “Most equivalence relations arising in practice come from
groups in the way just described.”

Since ∼ is an equivalence relation, Ω decomposes as a disjoint union of its
equivalence classes. These classes are called orbits.

In our running example, the sets of vertices, edges and faces form the three
orbits of G.

Question Take a golf ball; calculate the group of rotational symmetries, and
count its orbits on the set of dimples on the ball.

If a permutation group has just a single orbit, we say that it is transitive.
This can be put into group-theoretic terms. For α ∈Ω, we define the stabiliser

of α in G to be the subgroup

{g ∈ G : αg = α}

of G. [Check that it is a subgroup!] We write Gα for the stabiliser of α in G.
In the other direction, let H be an arbitrary subgroup of G. Let G : H denote

the set of right cosets of H in G. (This is sometimes written as H\G.) Then there
is an action of G on G : H, defined by the rule that the group element g induces
the permutation πg of G : H, where

(Hx)πg = Hxg.

[Check that, in this action, the stabiliser of the element H is the subgroup H,
while the stabiliser of Hx is the conjugate x−1Hx.] This is the action of G by right
multiplication on the coset space G : H.

Now there is a notion of isomorphism of group actions, and the following
theorem is true:

Theorem 2.1 Let G act transitively on Ω. For α ∈Ω, let H be the stabiliser of α .
Then the given action of G on Ω is isomorphic to the action of G on the set G : H
of right cosets of H by right multiplication.

Moreover, the actions of G on coset spaces G : H and G : K are isomorphic if
and only if H and K are conjugate subgroups of G.
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Remark I have used the notation H\G for the right coset space; the companion
notation for the left coset space is G/H. This notation is commonly used by
geometers. The disadvantage is that group theorists are made unhappy by seeing
G/H when H is not a normal subgroup of G. Another notation for the right coset
space is G : H, as was used by Csaba in his talks. This has the advantage that the
index of H in G (the number of cosets) is |G : H|. The small disadvantage is that
there is no companion notatiaon for the left coset space.

We have given the conventional definition of transitivity. I will now give a
different definition which can be used for all the other concepts I need.

Let S be a mathematical structure on the set Ω. I will say that S is trivial if it
is preserved by the symmetric group Sym(Ω), and non-trivial otherwise.

Thus, a subset A of Ω is trivial if and only if either A = /0 or A = Ω. Hence we
can say,

The permutation group G on Ω is transitive if and only if the only
G-invariant subsets of Ω are the trivial ones.

Other examples we will meet later include the following:

• A partition of Ω is trivial if and only if it is either the partition into sets of
size 1 or the partition with a single part.

• A graph on the vertex set Ω is trivial if and only if it is either the null graph
or the complete graph.

A permutation group G on Ω is regular if it is transitive and the stabiliser of
any point is the identity. [Question: Why are the order and degree of a regular
permutation group equal?] Cayley’s Theorem says that every group is isomorphic
to a regular permutation group. So every group of order n is isomorphic to a
subgroup of Sn; but the theorem works in the infinite case too.

3 Primitivity
I will treat the remaining concepts more briefly; these will reappear in the other
lectures.

Let G be a transitive permutation group on Ω. We say that G is primitive if
the only G-invariant partitions of Ω are the trivial ones. Thus G is imprimitive if
it preserves some non-trivial partition of Ω.
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An equivalence class B of a G-invariant equivalence relation has the property
that, for all g ∈ G, either Bg = B, or B∩Bg = /0. A set with this property is called
a block (of imprimitivity) for G. Thus, G is primitive if and only if the only blocks
are the empty set, singletons, and Ω.

In our example, let G be the symmetry group of the cube, and let Ω0 be the G-
orbit consisting of the vertices of the cube. The action of G on Ω0 is imprimitive.
In fact, there are two non-trivial partitions preserved by G:

• the vertices of the cube fall into two interlocking regular tetrahedra, which
are preserved or interchanged by all symmetries;

• there is a partition into four pairs of antipodal vertices, which is also pre-
served.

Theorem 3.1 (a) Let G be a transitive permutation group on Ω, where |Ω|> 1.
Then G is primitive if and only if the stabiliser of a point of Ω is a maximal
proper subgroup of G.

(b) Let G be primitive on Ω. Then every non-trivial normal subgroup of G is
transitive.

(c) Let G be primitive on Ω. Then G has at most two minimal normal sub-
groups; if there are two, then they are isomorphic and non-abelian, and
each of them acts regularly.

We saw that every group is isomorphic to a transitive permutation group (Cay-
ley’s Theorem). The last part of the theorem above shows that not every group is
isomorphic to a primitive permutation group.

4 Basic groups and O’Nan–Scott
In this section we specialise to finite groups.

A Cartesian structure on Ω is an identification of Ω with Ad , where A is some
set. We can regard A as an “alphabet”, and Ad as the set of all words of length d
over the alphabet A. Then Ad is a metric space, with the Hamming metric (used
in the theory of error-correcting codes): the distance between two words is the
number of positions in which they differ.

A Cartesian structure is non-trivial if |A|> 1 and d > 1.
Let G be a primitive permutation group on Ω. We say that G is basic if it

preserves no non-trivial Cartesian structure on Ω. (Although this concept is only
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defined for primitive groups, we see that the imprimitive group we met earlier,
the symmetry group of the cube acting on the vertices, does preserve a Cartesian
structure. Note that the automorphism group of a Cartesian structure over an
alphabet of size 2 is necessarily imprimitive – generalise our argument for the
cube to see this.)

The group-theoretic structure of basic groups is even more restricted. Part of
the celebrated O’Nan–Scott Theorem asserts the following. In this theorem, a
permutation group G is called affine if it acts on a vector space V and its elements
are products of translations and invertible linear transformations of V , so that G
contains all the translations. It is almost simple if T ≤ G≤ Aut(T ), where T is a
finite simple group and Aut(T ) its automorphism group (T embeds into Aut(T )
as the group of inner automorphisms or conjugations). I will not define diagonal
groups, but simply give an example. Let T be a finite simple group. Then T ×T ,
acting on T by the rule

x(g,h) = g−1xh for all x,g,h ∈ G,

is a diagonal group. (The name comes from the fact that the stabiliser of the
identity is the diagonal subgroup {(g,g) : g ∈ G} of G×G.)

Theorem 4.1 Let G be a finite basic primitive permutation group. Then G is
affine, diagonal, or almost simple.

See Pablo’s lectures for much more detail on this.

5 Multiple transitivity
For any permutation group G on Ω, there is an induced action of G on the set of
t-element subsets of Ω, or of t-tuples of elements of Ω, for any natural number t.
This is defined in the obvious way:

{α1, . . . ,αt}g = {α1g, . . . ,αtg},
(α1, . . . ,αt)g = (α1g, . . . ,αt)g.

We say that G is t-homogeneous (or t-set transitive) if it acts transitively on
the set of t-element subsets; and G is t-transitive if it acts transitively on the set
of t-tuples of distinct elements of Ω. (The word “distinct” is necessary here; for
example, no permutation can carry the pair (α,α) to (β ,γ) if β 6= γ .)
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It is clear that, for t ≤ |Ω|, a t-transitive group is t-homogeneous.
A consequence of the Classification of Finite Simple Groups (CFSG) is that

all finite 2-transitive groups are known: indeed:

Theorem 5.1 For t ≥ 6, the only finite t-transitive groups are the symmetric and
alternating groups.

For t = 2, we can put this in terms of non-trivial structures:

• G is 2-homogeneous if and only if it preserves no non-trivial graph on the
vertex set Ω.

• G is 2-transitive if and only if it preserves no non-trivial directed graph on
Ω.

For larger t, we could formulate these notions in terms of “hypergraphs”, but
I will not be concerned with this.

Later in the lectures I will say more about non-trivial G-invariant graphs,
which will also be treated by other lecturers.

To summarise some of this in a table. Going down the table, the conditions are
meant to become stronger; so we assume that primitive groups are transitive, basic
groups are primitive, and so forth. Sometimes these implications hold without
being asserted.

Condition Preserves no notrivial
Transitive subset
Quasiprimitive —
Primitive partition

disjoint union of complete graphs
Basic Cartesian structure

Hamming graph
. . . . . .
2-homogeneous undirected graph
2-transitive directed graph

Cheryl’s talks concern quasiprimitive groups, which have no simple charac-
terisation in this sense. Csaba and Pablo discuss things around the primitive and
basic borderlines.

In my third lecture, time permitting, I will insert two more properties between
basic and 2-homogeneous (called synchronizing and separating), and in the fifth
lecture I will insert one more (the road closure property).

There is no need to go further, since the 2-transitive finite groups are known.
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