
Permutation Groups and Transformation Semigroups
Lecture 2: Semigroups

Peter J. Cameron
Permutation Groups summer school, Marienheide

18–22 September 2017

I am assuming that you know what a group is, but I will not make the same
assumption about semigroups. This lecture introduces semigroups and transfor-
mation semigroups.

1 Basic concepts
We begin with the definitions.

• A semigroup is a set S with a binary operation ◦ satisfying the associative
law:

a◦ (b◦ c) = (a◦b)◦ c

for all a,b,c ∈ S.

• A monoid is a semigroup with an identity 1, an element satisfying

a◦1 = 1◦a = a

for all a ∈ S.

• A group is a monoid with inverses, that is, for all a ∈ S there exists b ∈ S
such that

a◦b = b◦a = 1.

From now on we will write the operation as juxtaposition, that is, write ab instead
of a◦b, and a−1 for the inverse of a.

There is essentially no difference between semigroups and monoids: any monoid
is a semigroup, and conversely, to any semigroup we can add an identity without
violating the associative law. However, there is a very big difference between
semigroups and groups:
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Order 1 2 3 4 5 6 7 8
Groups 1 1 1 2 1 2 1 5

Monoids 1 2 7 35 228 2237 31559 1668997
Semigroups 1 5 24 188 1915 28634 1627672 3684030417

A semigroup which will occur often in our discussions is the full transforma-
tion semigroup T (Ω) on the set Ω, whose elements are all the maps from Ω to
itself, and whose operation is composition. This is the analogue of the symmet-
ric group in semigroup theory. Usually Ω is finite, say |Ω| = n, and we write
this semigroup as Tn. As with permutations, we write maps on the right of their
arguments, and compose from left to right.

T (Ω) is a monoid: the identity element is the identity map. It contains the
symmetric group Sym(Ω), the group of all permutations. Note that T (Ω)\Sym(Ω)
is a semigroup.

The order of Tn is |Tn|= nn.

2 Special semigroups
The most interesting semigroups are usually those which are (in some sense) clos-
est to groups.

An element a of a semigroup S is regular if there exists x∈ S such that axa= a.
The semigroup S is regular if all its elements are regular. Note that a group is
regular, since we may choose x = a−1.

Regularity is equivalent to a condition which appears formally to be stronger:

Proposition 2.1 If a ∈ S is regular, then there exists b ∈ S such that aba = a and
bab = b.

Proof Choose x such that axa = a, and set b = xax. Then

aba = axaxa = axa = a,
bab = xaxaxax = xaxax = xax = b.

Proposition 2.2 The semigroup Tn is regular.

Proof Given a map a, choose a preimage s for every t in the image of a, and
define x to map t to s if t is in the image of a (arbitrary otherwise).
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An idempotent in a semigroup S is an element e such that e2 = e. Note that, if
axa = a, then ax and xa are idempotents. In a group, there is a unique idempotent,
the identity. By contrast, it is possible for a non-trivial semigroup to be generated
by its idempotents, as we will see later.

Idempotents have played an important role in semigroup theory. One reason
for this is that they always exist in a finite semigroup:

Proposition 2.3 Let S be a finite semigroup, and a ∈ S. Then some power of a is
an idempotent.

Proof Since S is finite, the powers of a are not all distinct: suppose that am =
am+r for some m,r > 0. Then ai = ai+tr for all i≥m and t ≥ 1; choosing i to be a
multiple of r which is at least m, we see that ai = a2i, so ai is an idempotent.

It follows that a finite monoid with a unique idempotent is a group. For the
unique idempotent is the identity; and, if ai = 1, then a has an inverse, namely
ai−1.

A semigroup S is an inverse semigroup if for each a there is a unique b such
that aba = a and bab = b. The element b is called the inverse of a. Among several
other definitions, I menion just one: it is a semigroup S in which, for every a ∈ S,
there is an element a′ ∈ S such that

(a′)′ = a, aa′a = a aa′bb′ = bb′aa′

for all a,b ∈ S. Thus an inverse semigroup is a regular semigroup in which idem-
potents commute. (For this we need to show that every idempotent has the form
aa′.) In an inverse semigroup, we often write a−1 for a′.

Proposition 2.4 Let S be an inverse semigroup.

(a) Each element of S has a unique inverse.

(b) The idempotents form a semilattice under the order relation e ≤ f if e f =
f e = f .

3 The symmetric inverse semigroup
The most famous inverse semigroup is the symmetric inverse semigroup I(Ω) on
the set Ω. Its elements are the partial bijections on this set, that is, all bijective
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maps f : X→Y , where X ,Y ⊆Ω. We compose elements wherever possible. Thus,
if f : X→Y and g : A→ B, then f g is defined on the preimage (under f ) of Y ∩A,
and maps it to the image (under g) of this set. If f : X → Y , then the inverse (as
required in the definition of an inverse semigroup) is the inverse function, which
maps Y to X : so f f−1 is the identity map on X , and f−1 f the identity map on Y .
If |Ω|= n, we write this semigroup as In. Its order is

|In|=
n

∑
k=0

(
n
k

)2

k!,

since, for a map of rank k, there are
(n

k

)
choices for the domain and the same

number for the rank, and k! bijections between them.
Idempotents are just identity maps on subsets, and the semilattice of idempo-

tents is simply the lattice of subsets of the set {1, . . . ,n}.
The formulae for the orders of the symmetric group (|Sn| = n!) and the full

transformation semigroup (|Tn| = nn) are simple and well-known. The order of
the symmetric inverse semigroup is less familiar: it is sequence A002720 in the
On-Line Encyclopedia of Integer Sequences, beginning

1,2,7,34,209,1546,13327,130922,1441729,17572114, . . .

There is a natural construction for subsemigroups of I(Ω) which gives many
beautiful examples but has not been much studied.

Suppose that L is a meet-semilattice of subsets of Ω: that is, a set of subsets
closed under intersection. Let G be a permutation group on Ω which preserves
L . Then the set of all restrictions of elements of G to sets in L is an inverse
semigroup. For let g1 and g2 be elements of G, and A1 and A2 sets in L ; let hi be
the restriction of gi to Ai. Then h1h2 is the restriction of g1g2 to A1∩A2g−1, and
this set belongs to L , by assumption.

For an example of this construction, take Ω to be a vector space, G the general
linear group, and L the set of subspaces.

4 Analogues of Cayley’s theorem
Cayley’s Theorem asserts that a group of order n is isomorphic to some subgroup
of Sn. The proof is well-known: we take the Cayley table of the group G, the
matrix (with rows and columns labelled by group elements); each column of the
Cayley table (say the column indexed by b) corresponds to a transformation ρb of
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the set G (taking the row label a to the product ab, the ath element of column b).
Then it is straightforward to show that

• ρb is a permutation, so that ρb ∈ Sn;

• the map b 7→ ρb is one-to-one;

• the map b 7→ ρb is a homomorphism.

So the set {ρb : b ∈ G} is a subgroup of Sn isomorphic to G.
This theorem has an important place in the history of group theory. In the nine-

teenth century, the subject changed from descriptive (the theory of transformation
groups or permutation groups) to axiomatic; Cayley’s theorem guarantees that the
“new” abstract groups are the same (up to isomorphism) as the “old” permutation
groups or subgroups of Sn.

Almost the same is true for semigroups:

Proposition 4.1 Any semigroup of order n is isomorphic to a subsemigroup of the
full transformation semigroup Tn+1.

Proof If we follow the proof of Cayley’s theorem, the thing that could go wrong
is the second bullet point: the map b 7→ ρb may not be one-to-one. To fix the prob-
lem, we first add an identity element to the semigroup, and then follow Cayley’s
proof. Now, if ρb = ρc and 1 is the identity, then

b = 1b = 1ρb = 1ρc = 1c = c,

so the map b 7→ ρb is one-to-one.

For inverse semigroups, there is a similar representation theorem. The proof
is a little more complicated, and is not given here.

Theorem 4.2 (Vagner–Preston Theorem) Let S be an inverse semigroup of or-
der n. Then S is isomorphic to a sub-semigroup of the symmetric inverse semi-
group In.
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5 Basics of transformation semigroups
We discuss a few concepts related to transformations and transformation semi-
groups on a finite domain Ω.

Any map f : Ω→Ω has an image

Im( f ) = {x f : x ∈Ω},

and a kernel, the equivalence relation ≡ f defined by

x≡ f y⇔ x f = y f ,

or the corresponding partition of Ω. (We usually refer to the partition when we
speak about the kernel of f , which is denoted Ker( f ).) The rank rank( f ) of f is
the cardinality of the image, or the number of parts of the kernel.

Under composition, we clearly have

rank( f1 f2)≤min{rank( f1), rank( f2)},

and so the set Sm = { f ∈ S : rank( f )≤ m} of elements of a transformation semi-
group which have rank at most m is itself a transformation semigroup. In general,
there is no dual concept; but the set of permutations in S (elements with rank n)
is closed under composition, and forms a permutation group (which is the group
of units of S), if it happens to be non-empty. The interplay between permutation
groups and transformation semigroups is central to these lectures.

Suppose that f1 and f2 are transformations of rank r. As we saw, the rank of
f1 f2 is at most r. Equality holds if and only if Im( f1) is a transversal, or section,
for Ker( f2), in the sense that it contains exactly one point from each part of the
partition Ker( f2). This combinatorial relation between subsets and partitions is
crucial for what follows. We note here one simple consequence.

Proposition 5.1 Let f be a transformation of Ω, and suppose that Im( f ) is a
section for Ker( f ). Then some power of f is an idempotent with rank equal to
that of f .

For the restriction of f to its image is a permutation, and some power of this
permutation is the identity.

Question Let G be a finite group. Let S1 be the transformation semigroup con-
sisting of all endomorphisms of G (homomorphisms from G into itself), and S2 the
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inverse semigroup of all partial isomorphisms of G (all isomorphisms H1→ H2,
where H1,H2 ≤ G). Prove that, if G is an abelian group, then |S1|= |S2|.

I do not know any non-abelian group satisfying this equation. Is this a charac-
terisation of abelian groups?
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