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The notion of synchronization arises in automata theory, but has very close
links with transformation semigroups. The concept has had a lot of attention,
partly because of the Černý conjecture; we begin with an account of this very
addictive conjecture.

1 The dungeon
You are in a dungeon consisting of a number of rooms. Passages are marked with
coloured arrows. Each room contains a special door; in one room, the door leads
to freedom, but in all the others, to instant death. You have a schematic map of
the dungeon (Figure 1), but you do not know where you are.
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Figure 1: The dungeon

You can check that (Blue, Red, Blue) takes you to room 1 no matter where
you start.

What Figure 1 shows is a finite-state deterministic automaton. This is a ma-
chine with a finite set of states, and a finite set of transitions, each transition being
a map from the set of states to itself. The machine starts in an arbitrary state, and
reads a word over an alphabet consisting of labels for the transitions (Red and

1



Blue in the example); each time it reads a letter, it undergoes the corresponding
transition.

Our automata are particularly simple. There is no distinguished start state, no
“accept state”, no regular language, no nondeterminism.

A reset word is a word with the property that, if the automaton reads this
word, it arrives at the same state, independent of its start state. An automaton
which possesses a reset word is called synchronizing.

Not every finite automaton has a reset word. For example, if every transition is
a permutation, then every word in the transitions evaluates to a permutation. How
do we recognise when an automaton is synchronizing?

2 Synchronization
Combinatorially, an automaton is an edge-coloured digraph with one edge of each
colour out of each vertex. Vertices are states, colours are transitions.

Algebraically, if Ω = {1, . . . ,n} is the set of states, then any transition is a
map from Ω to itself. Reading a word composes the corresponding maps, so the
set of maps corresponding to all words is a transformation semigroup (indeed, a
transformation monoid) on Ω.

We transfer the term “synchronizing” from the automaton to the semigroup.
Thus, a transformation semigroup S is said to be synchronizing if it contains a map
of rank 1.

The notion of synchronization arises in industrial robotics. Parts are delivered
by conveyor belt to a robot which is assembling something. Each part must be
put on in the correct orientation. One way to do this would be to equip the robot
with sensors, information processing, and manipulators. An easier way involves
synchronization.

Let us, for a simple case, suppose that the pieces are square, with a small
projection on one side:

Suppose the conveyor has a square tray in which the pieces can lie in any orien-
tation. Simple gadgets can be devised so that the first gadget rotates the square
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through 90◦ anticlockwise; the second rotates it only if it detects that the projec-
tion is pointing towards the top. The set-up can be represented by an automaton
with four states and two transitions, as in Figure 2.
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Figure 2: An industrial automaton

Now it can be verified that BRRRBRRRB is a reset word (and indeed that it is
the shortest possible reset word for this automaton).

This is a special case of the Černý conjecture, made about fifty years ago and
still open:

If an n-state automaton is synchronizing, then it has a reset word of
length at most (n−1)2.

The above example and the obvious generalisation show that the conjecture,
if true, is best possible.

The Černý conjecture has been proved in some cases, but the best general
upper bound known is O(n3), due to Pin. Here is a proof of an O(n3) bound, which
does not get the best constant, but illustrates a simple but important principle.

Proposition 2.1 An automaton is synchronizing if and only if, for any two states
a,b, there is a word in the transitions which takes the automaton to the same place
starting from either a or b.

Proof The forward implication is clear. So suppose the condition of the Proposi-
tion holds. Choose an element f of the monoid generated by the transitions which
has smallest possible rank. If this rank is greater than 1, choose two points a and
b in the image. By assumption, there is an element h which maps a and b to the
same place; so the rank of f h is less than the rank of f , a contradiction.
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Figure 3: An extended diagram of an automaton

Now to obtain our bound, consider the diagram of the automaton extended to
include pairs of states (shown for our industrial example in Figure 3).

According to the lemma, we only have to check whether there is a path from
each vertex on the right (a pair of states) to a vertex on the left (a single state).
The length of such a path is O(n2), and questions of connectedness can easily
be checked. We only have to take such paths at most n− 1 times. Moreover,
checking this can be done in polynomial time, so we can test efficiently for the
synchronization property. However, it is known that finding the shortest reset
word is NP-hard.

3 Graph endomorphisms
We now take a little detour to discuss graph endomorphisms. A graph has ver-
tices and edges, each edge joining two vertices; we assume that the edge has no
direction (no initial or terminal vertex). An edge is a loop if the two vertices are
equal, a link otherwise. Two edges are parallel if they join the same two vertices.
A graph is simple if it has no loops and no two parallel edges.

Let Γ and ∆ be simple undirected graphs. A homomorphism from Γ to ∆

should be a structure-preserving map. Since the structure of a graph is given by
its edges, we make the definition as follows.

A homomorphism from graph Γ to graph ∆ is a map f from the vertex set of Γ

to that of ∆ with the property that, for any edge {v,w} of Γ, the image {v f ,w f} is
an edge of ∆.

Parallel edges make no difference to this concept. However, the existence
of loops changes things enormously. In a loopless graph, the images of adjacent
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vertices must be distinct; but, if ∆ had a loop on a vertex x, we could map the whole
of Γ to x. Similarly, the existence of directions on the edges makes a difference.
For us, graphs will always be simple.

Let Kn be a complete graph on n vertices: all pairs of vertices are joined by
edges. Also, let ω(Γ) denote the clique number of Γ, the size of the largest com-
plete subgraph of Γ; and let χ(Γ) be the chromatic number of Γ, the minimum
number of colours required to colour the vertices so that adjacent vertices receive
different colours (this is called a proper colouring of Γ). Note that ω(Γ)≤ χ(Γ),
since the vertices in a clique must all get different colours.

Proposition 3.1 (a) A homomorphism from Kn to Γ is an embedding of Kn into
Γ; such a homomorphism exists if and only if ω(Γ)≥ n.

(b) A homomorphism from Γ to Kn is a proper colouring of Γ with n colours;
such a homomorphism exists if and only if χ(Γ)≤ n.

(c) There are homomorphisms in both directions between Γ and Kn if and only
if ω(Γ) = χ(Γ) = n.

An endomorphism of a graph Γ is a homomorphism from Γ to itself, and an
automorphism is a bijective endomorphism. The set of all endomorphisms of a
graph is a transformation monoid on the vertex set of the graph, and the set of au-
tomorphisms is a permutation group. [Caution: This definition of automorphism
fails in the infinite case, where we must also assume that the inverse map is an
endomorphism.]

Now the single obstruction to a semigroup S being synchronizing is the exis-
tence of a graph Γ such that S≤ End(Γ).

Theorem 3.2 Let S be a transformation monoid on Ω. Then S fails to be synchro-
nizing if and only if there exists a non-null graph Γ on the vertex set Ω for which
S≤ End(Γ). Moreover, we may assume that ω(Γ) = χ(Γ).

Proof It is clear that the condition is sufficient, since endomorphisms cannot
collapse edges. Conversely, given a transformation monoid S, we define a graph
Gr(S) in which x and y are joined if and only if there is no element s ∈ S with
xs = ys. Show that S ≤ End(Gr(S)), that Gr(S) has equal clique and chromatic
number, and that S is synchronizing if and only if Gr(S) is null. (The proof is an
exercise.)
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4 Synchronizing groups
A permutation group is never synchronizing as a monoid, since no collapses at all
occur.

We abuse language by making the following definition. A permutation group
G on Ω is synchronizing if, for any map f on Ω which is not a permutation, the
monoid 〈G, f 〉 generated by G and f is synchronizing.

We can assume that the map f has minimal possible rank in 〈G, f 〉. Then,
for any g ∈ G, rank( f g f ) = rank( f ), from which it follows that (Im( f ))g is a
transversal for Ker( f ). We say that a k-set A is a G-transversal for a k-partition
P if, for any g ∈ G, Ag is a transversal for P. Thus a permutation group is non-
synchronizing if there is a non-trivial partition which has a G-section. However,
we can find a much more convenient equivalent condition, as follows.

Theorem 4.1 A permutation group G on Ω is non-synchronizing if and only if
there exists a G-invariant graph Γ, not complete or null, which has clique number
equal to chromatic number.

So the definition of synchronizing fits our paradigm for permutation group
properties: G is synchronizing if and only if it preserves no non-trivial graph with
equal clique and chromatic numbers.

Corollary 4.2 Let G be a permutation group of degree n > 2.

(a) If G is synchronizing, then it is transitive, primitive, and basic.

(b) If G is 2-homogeneous, then it is synchronizing.

To see that synchronizing implies basic, note that the Hamming graph (whose
vertex set is An, with two vertices joined if their Hamming distance is 1) has equal
clique and chromatic number.

In the case of 2-dimensional Hamming graphs, a colouring with |A| colours
can be identified with a Latin square. This example uses the Klein group:u
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In higher dimensions, such colourings correspond to more complicated com-
binatorial objects.

So synchronizing groups form an interesting class lying between basic prim-
itive groups and 2-homogeneous groups. We give an example to show that the
containments are strict.

Example Let G be the group induced by Sm on the set of 2-element subsets of
{1, . . . ,m}, where m ≥ 5. Then G is primitive. (For m = 4, the relation “equal or
disjoint” is a G-invariant equivalence relation on 2-sets.) It is clearly basic, and
not 2-homogeneous for m > 3.

We show that G is synchronizing if and only if m is odd.
There are two G-invariant graphs: the graph where two pairs are joined if

they intersect (aka the triangular graph T (m), or the line graph of Km) and the
complementary graph where two pairs are joined if they are disjoint (the Kneser
graph K(m,2)).

• The triangular graph has clique number m−1, a maximum clique consisting
of all pairs containing one given point of the m-set. Its chromatic number is
the chromatic index or edge-chromatic number) of Km, which is well known
to be m− 1 if m is even, or m if m is odd. (Indeed, if m is odd, a set of
pairwise disjoint pairs has size at most (m−1)/2, so the chromatic number
is at least m.)

• The clique number of the Kneser graph is m/2 if m is even, and (m−1)/2
if m is odd (by the argument just given). It is elementary to see that the
chromatic number is strictly larger; in fact, a celebrated theorem of Lovász
shows that the chromatic number is m−2.

So our claim follows.

5 Separating groups
Separation is a concept which implies synchronization but in turn is implied by
2-homogeneity. It has no obvious connection with automata but is defined analo-
gously to our graph-theoretic characterisation of synchronization.

We begin with the following general result.
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Proposition 5.1 Let G be a transitive permutation group on Ω. Suppose that A
and B are subsets of Ω with the property that, for all g ∈G, we have |Ag∩B| ≤ 1.
Then |A| · |B| ≤ |Ω|.

Proof Count triples (a,b,g) with a ∈ A, b ∈ B, g ∈ G, and ag = b.
On the one hand, there are |A| choices of a and |B| choices of b; then the set

of elements of G mapping a to b is a coset of the stabiliser of a, and so there are
|G|/|Ω| such elements, by the Orbit-Stabiliser Theorem. So the number of triples
is |A| · |B| · |G|/|Ω|.

On the other hand, for each g ∈ G, we have |Ag∩B| ≤ 1, so there is at most
one choice of a and b. So there are at most |G| such triples.

The argument shows that, if equality holds, then |Ag∩B|= 1 for all g ∈ G.
Note that the hypothesis of the proposition is satisfied if A is a clique and B

an independent set in a vertex-transitive graph. Let α(Γ) be the independence
number of Γ (the size of the largest independent set of Γ, in other words, the
clique number of the complementary graph. Then we have:

Corollary 5.2 If Γ is a vertex-transitive graph on n vertices, then

ω(Γ) ·α(Γ)≤ n.

We say that a transitive permutation group G on a set Ω is separating if, given
any two subsets A and B of Ω with |A| · |B| = |Ω| and |A|, |B| > 1, there exists
g ∈ G such that Ag∩B = /0: in other words, A and B can be “separated” by an
element of G.

The argument in the previous proposition shows that, if sets A and B witness
that G is non-separating, then |Ag∩B|= 1 for all g ∈ G.

Proposition 5.3 A separating group is synchronizing.

For, if G is non-synchronizing, let P be a partition of Ω and A a G-transversal
for P; let B be a part of P. Then |A| · |B|= |Ω| and |Ag∩B|= 1 for all g ∈ G.

Theorem 5.4 The transitive group G on Ω is non-separating if and only if there
exists a G-invariant graph Γ on Ω, not complete or null, such that

ω(Γ) ·α(Γ) = |Ω|.
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Proof If such a graph Γ exists, we can take A and B to be a clique and an inde-
pendent set of maximum size in Γ to witness non-separation.

Conversely, suppose that G is non-separating, and let A and B be sets witness-
ing this property. No element of G can map a 2-subset of A to a 2-subset of B. So
form a graph whose edges are the images under G of the 2-subsets of A; the graph
is G-invariant, and A is a clique and B an independent set. Since the product of
their cardinalities is |Ω|, they are both of maximum size.

This theorem shows that we can test whether a group is separating by com-
puting clique numbers of all G-invariant graphs. To test for the synchronizing
property, we first test separation; if this fails, we must look further, and face the
harder problem of finding chromatic numbers. If it were the case that “synchroniz-
ing” and “separating” were equivalent, then the step involving finding chromatic
number could be omitted, and the algorithm would only need to find clique num-
bers of graphs. This is not so, but one has to look quite far to find an example of
a group which is synchronizing but not separating.

Examples of such groups can be found as follows.
Let V be a 5-dimensional vector space over a finite field F of odd character-

istic, and Q a non-singular quadratic form on V . It can be shown that there is a
choice of basis such that in coordinates, after possibly multiplying by a non-zero
scalar,

Q(x1, . . . ,x5) = x1x2 + x3x4 + x2
5.

The quadric associated with Q is the set of points in the projective space based
on V (that is, 1-dimensional subspaces of V ) on which Q vanishes. It can be
shown that the number of points on the quadric is (q+1)(q2 +1). The associated
orthogonal group O5(F) acts on the quadric; it is transitive on the points, and
has just two orbits on pairs of points, corresponding to orthogonality and non-
orthogonality with respect to the associated bilinear form.

Let Γ be the graph in which two points are joined if they are orthogonal. Then
it is known that

• the clique number of Γ is (q+1), and the cliques of maximal size are totally
singular lines on the quadric (the point sets of 2-dimensional subspaces on
which the form vanishes identically – the span of the first and third basis
vectors is an example);

• the independence number of Γ is q2 + 1, and the independent sets of max-
imal size are ovoids of the quadric, sets of points meeting every line in
exactly one point.
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We see from this that O5(q) is not separating. Is it synchronizing?
A colouring of the complement of Γ with q2 + 1 colours would be a spread,

a partition of the quadric into totally singular lines; it is a standard fact that no
such partition can exist. A colouring of Γ with q+ 1 colours, on the other hand,
is a partition of the quadric into q+ 1 ovoids. It was shown by Ball, Govaerts
and Storme that, for fields F of odd prime order, the only ovoids on this quadric
are hyperplane sections (elliptic quadrics in 3-dimensional projective space). Any
two hyperplanes intersect in a plane, and the corresponding quadrics meet in a
conic in the plane; so there are no two disjoint ovoids, and a fortiori no partitions
into ovoids, in this case. So we have an infinite family of groups which are syn-
chronizing but not separating. (The classification of ovoids over non-prime fields
is unknown.)

Note how this simple question in synchronization theory leads to the frontiers
of knowledge in finite geometry!
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